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While the number and identity of proteins expressed in a single human cell type is currently unknown,
this fundamental question can be addressed by advanced mass spectrometry (MS)-based proteomics.
Online liquid chromatography coupled to high-resolution MS and MS/MS yielded 166 420 peptides
with unique amino-acid sequence from HeLa cells. These peptides identified 10 255 different human
proteins encoded by 9207 human genes, providing a lower limit on the proteome in this cancer
cell line. Deep transcriptome sequencing revealed transcripts for nearly all detected proteins.
We calculate copy numbers for the expressed proteins and show that the abundances of 490% of
them are within a factor 60 of the median protein expression level. Comparisons of the proteome
and the transcriptome, and analysis of protein complex databases and GO categories, suggest that
we achieved deep coverage of the functional transcriptome and the proteome of a single cell type.
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Introduction

An inventory of the building blocks of a biological system is a
prerequisite for a systems-wide understanding of its functions.
For human genes this was enabled by the sequencing of the
human genome, which yielded the unexpected result that the
genome is comprised of a mere 20 000 protein-coding genes
(Clamp et al, 2007). In contrast, the number of distinct
transcripts has increased drastically due to the development of
very deep—‘next generation’—shotgun sequencing of tran-
scriptomes, termed RNA-Seq (Mortazavi et al, 2008; Wang
et al, 2009). Depending on the nature of the data and analy-
sis criteria (Guttman et al, 2010; Haas and Zody, 2010; Trapnell
et al, 2010), transcripts of between 8000 and 16 000 protein-
coding genes expressed from a single cell type can be detected.

High-resolution mass spectrometry (MS)-based proteomics
has improved at a rapid pace in recent years (Aebersold and
Mann, 2003; Mallick and Kuster, 2010; Schwanhausser et al,
2011). These advances had allowed us to quantify an essentially
complete proteome of the model organism yeast as judged by
comparison with genomic tagging methods (de Godoy et al,
2008). In mammalian systems, in contrast, our depth of analysis
in single cell types has typically been limited to 4000–6000
protein groups (proteins distinguishable by identified peptides)
(Graumann et al, 2008; Lundberg et al, 2010; Wisniewski et al,
2009a). Here, we set out to explore a human proteome in the
depth achievable with current technology and to compare it
with the corresponding transcriptome.

Results and discussion

We chose to investigate HeLa cells, a human cervical carcinoma
cell line, because it is widely used in research and because a
cell line is a more homogeneous system compared with tissues.
To achieve maximum proteome coverage while maintaining a
reasonable measurement time, we investigated the effects of
protein fractionation, proteolytic digestion, peptide fractiona-
tion and reverse phase chromatography on the number of
proteins identified (Figure 1). We employed moderate fractio-
nation at the protein level by gel filtration, digestion by three
specific proteases, combined with pipette-based prefractiona-
tion at the peptide level by strong anion exchange (Wisniewski
et al, 2009a) before online LC MS/MS analysis in 4 h gradients
with relatively long columns (40 cm, 1.8 mm bead material).
Peptide MS spectra as well as fragment MS/MS spectra were
measured with high resolution and mass accuracy (Mann and
Kelleher, 2008; Olsen et al, 2007; Olsen et al, 2009).

On the basis of initial results (‘Experiment 1’), we generated
a data set (‘Experiment 2’)—involving 72 fractions and a total
measuring time of 288 h—which is the basis of all subsequent
discussion. All data files were analyzed together in the
MaxQuant computational proteomics environment (Cox and
Mann, 2008). A total of 2 337 336 high-resolution fragmenta-
tion spectra, together with the corresponding high-accuracy
precursor masses, were submitted to the Andromeda search
engine (Cox et al, 2011). Median peptide score was 121, with
only 6% below a score of 60 (Supplementary Figure S1) and
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the average identification of the fragmentation spectra was
43%. Average absolute mass deviation of the precursors was
1.2 and 4.8 p.p.m. for the matched fragment masses. This
identified and quantified 163 784 peptides that have unique
amino-acid sequence at a false discovery rate (FDR) of 1%,
many of them fragmented multiple times (seven on average).
Of these, 84 051 were from tryptic digestion, 52108 from LysC
and 44 704 from GluC. From these data, MaxQuant identified
10 255 proteins with 99% confidence (Figure 1B; Supplemen-
tary Table S1), providing a lower bound of the number of
proteins expressed in HeLa cells. Trypsin digestion produces
peptides in an ideal size range for MS/MS and, consequently, it
yielded the highest number of identifications. Of the proteins
identified after LysC digestion, 85% overlapped with the trypsin
data set, and the GluC data only added another 5.2% of novel
identifications. Less than 5% of all proteins were only identified
by one peptide. Taken together, the three proteases resulted in
424% median sequence coverage of identified proteins.

The 10 255 proteins were mapped to 9207 Ensembl-
annotated human protein-coding genes (Hubbard et al,
2002). These genes were equally distributed across the
different human chromosomes with most and least number
of genes identified in chromosomes 1 and 21, respectively
(Supplementary Figure S2; Supplementary Table S2). Further,
the MS/MS spectra were searched against the ENSEMBL
database together with the GENSCAN predictions. This led to
41900 peptides mapping only to the GENSCAN predictions
and not to the known ENSEMBL genes. We provide a list of the
highest scoring of these peptides, as they may point to as yet
unannotated exons (Supplementary Table S3).

To compare the proteome with the transcriptome and to
evaluate the completeness of our results, we performed RNA-
Seq on the same cells. Briefly, we acquired 50 million single-
end 76 bp cDNA reads on the Illumina GAIIx platform. Reads
were mapped to the human reference genome sequence and
assembled into 49 000 unique transcripts (Trapnell et al, 2010)
that mapped to 16 554 different protein-coding genes (Supple-
mentary Table S4). The abundance of the non-filtered data
expressed as Fragments Per Kilobase of exon per Million
fragments mapped (FPKM) shows a bimodal distribution
(Figure 2A) where about 33% of the transcripts have low
signals below one FPKM. When excluding transcripts ex-
pressed at abundances lower than one FPKM, the number of
genes identified was reduced to about 11000, and genes
corresponding to hundreds of low abundance proteins
identified by MS were lost (Figure 2A). We therefore excluded
transcripts for which the estimated abundance is lower than
their 95% confidence interval (FPKM 4D95 FPKM). Using this
criterion, transcripts for 11 936 protein-coding genes were
detected including a considerable number of transcripts in the
low abundance region for which no proteins were detected.
These include many genes that are not expected to be
functionally relevant in HeLa cells, such as olfactory receptors
(Supplementary Figure S3). The distribution of protein
abundance values is broader than the filtered mRNA abun-
dance distribution but has the same general shape (Figure 2B).
Recently, the bimodal distribution of the transcriptome has
been investigated in detail. The transcripts in the left part of the
distributions appear to be present at less than one copy per cell
and often code for functions not represented in the cell type
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Figure 1 Deep proteomic analysis of HeLa cells. (A). Proteome preparation
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(Hebenstreit et al, 2011). Therefore, it is possible that many of
these transcripts are not expressed as proteins. Together, the
data suggest that the detected proteome covers a very large
part of the transcripts coding for functional proteins.

We compared the transcriptome and proteome on the basis
of the ENSEMBL gene annotation. For 94% of genes for which
a protein was identified by MS, a corresponding mRNA was
detected (Figure 2C). Analysis of membrane proteins and
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regulatory proteins is often challenging in proteomics but Gene
Ontology (GO) analysis showed similar percentages of
transcripts and proteins for these categories, demonstrating
that there were no such biases in the proteomic data
(Figure 2D). This is likely the result of essentially complete
solubilization of the proteome in SDS in the FASP procedure
(Wisniewski et al, 2009b) combined with the overall depth of
analysis.

The MS signal of peptides identifying each protein can be
used to estimate its absolute cellular abundance (de Godoy
et al, 2008; Malmstrom et al, 2009; Silva et al, 2006) in a similar
way that the FPKM is a proxy for the abundance of transcripts.
To calculate the approximate abundance of each protein we
used the iBAQ algorithm (Schwanhausser et al, 2011), which
normalizes the summed peptide intensities by the number of
theoretically observable peptides of the protein. These
normalized protein intensities are translated to protein copy
number estimates based on the overall protein amount in the
analyzed sample. We obtained good agreement with indepen-
dently determined absolute copy numbers of 37 HeLa proteins
(Zeiler et al, 2011; Supplementary Table S5). FPKM-based
transcript abundance values correlate well with iBAQ-based
protein abundance values (Spearman’s correlation 0.6;
Figure 2E). The use of high-resolution MS and RNA-Seq may
account for the fact that higher correlations between tran-
scriptomes and proteomes are observed here than in previous
studies (Cox and Mann, 2011; de Sousa Abreu et al, 2009;
Maier et al, 2009), where technical imperfections in the
quantification of both the proteome and the transcriptome are
likely to have reduced their apparent correlations.

To assess the completeness of the detected proteome, we
first inspected macromolecular complexes for which all core
members are presumably functionally necessary. Most of such
complexes, such as the proteasome, spliceosome, histone-
modifying complexes and respiratory chain complexes were
completely represented according to the Corum protein
complex database (Supplementary Figure S4A). Mean pro-
teome coverage of all Corum complexes was 495%, slightly
less than the corresponding transcriptome coverage (96.5%).
Sarcoglycan–sarcospan complex (normally expressed in the
muscle), SNARE complexes (abundant in neuronal tissue),
ITGA2b–ITGB3 complex (normally expressed in platelets)
were among the complexes with lower coverage (20, 40
and 50%, respectively), likely due to cell type specificity.
Even though only 5% of our HeLa cell population was in
mitosis, we covered 61 of 63 proteins in a reference set of
cell cycle-specific proteins (Jensen et al, 2006). Our data set
also has a very high coverage of most metabolic pathways
pertaining to basic cellular functions. Comprehensiveness
of the proteome is difficult to determine by comparison
with pathway databases because they contain cell type-
specific proteins. Nevertheless, judged against the coverage
of pathways achieved by deep-sequencing transcriptomics,
the proteomics data were 490% complete (Supplementary
Figure S4B). Together, the transcriptome and proteome data
suggest that at least 10 000–12 000 genes are expressed in
HeLa cells.

The iBAQ values determined above estimate the absolute
amount of each protein, incorporating individual peptide
signals in MS and normalized by the number of observable

peptides of the protein. The 40 most abundant proteins
comprised 25% of the proteome (Figure 3A; Supplementary
Table S6) with filaminA, pyruvate kinase, enolase, vimentin
and Hsp 60 contributing 41% each. The most abundant 600
proteins constitute 75% of HeLa cell proteome mass (sum of
all iBAQ values). The individual contribution of each protein
to the total mass in combination with the knowledge of
number of cells in the initial sample was used to roughly
estimate the absolute copy number of the proteins in HeLa
cells. The ranked distribution of all individual proteins
revealed that 90% of the quantified proteome is contained
within a range of a factor of 60 above or below the
median protein copy number of 18 000 molecules per cell
(Figure 3B; Supplementary Table S7). The lower half of the
proteome accounts for o2% of its total mass. The abundance
distribution of the transcriptome is generally similar but
its range is compressed compared with the proteome with
90% of the transcriptome contained in a 500-fold expression
range and 2000 transcripts accounting for 75% of the total
transcriptome mass.

The protein abundance values can also be used to estimate
the proportional contribution of any individual protein,
protein complex and protein class to the total proteome. For
example, ribosomes, which are encoded by only 1% of human
genes and for which we identified 195 different proteins
contributed 6% to total protein mass in our data (Figure 3C).
Similarly, the actin cytoskeleton, as classified by GO (Ashbur-
ner et al, 2000) annotation, contributes four-fold more to the
proteome mass than expected from the number of genes and
proteins and ‘protein folding’ is achieved by o2% of the
identified proteome by numbers but requires 8% of proteome
mass in line with the high abundance of heat-shock and
similar proteins (Figure 3D). In contrast, integral membrane
proteins account for 25% of the genome but contribute much
less to the transcriptome and the proteome (7.6% of total
protein mass). This presumably reflects the often cell type-
specific functions of these proteins (Lundberg et al, 2010;
Ramskold et al, 2009).

Structural proteins and proteins in basic cellular machi-
neries are known to be much more abundant than regulatory
proteins; however, the generality of this rule could not
previously be evaluated. Ribosomal proteins indeed formed
a tight cluster at the top end of the distribution of transcript
and protein expression levels (Figure 3E). This was also true of
the core components of the proteasome, but not its regulatory
subunits, which were up to a factor of 100 less abundant.
Interestingly, the abundance of cytoskeletal proteins extended
over a broad range from the most abundant proteins and
transcripts to the medium and low abundance parts of the
distribution. Metabolic enzymes are likewise generally con-
sidered to be an abundant class of proteins, but we found that
they extend over almost the entire distribution of the
transcriptome and proteome expression (Figure 3F). Enolase
was the protein with the highest expression value, while
glycogen phosphorylase (muscle form) was expressed
100 000-fold less at the protein level and 10 000-fold less at
the transcript level. Large differences in expression levels of
different metabolic enzymes have also been observed in recent
targeted proteomics experiments in yeast (Picotti et al, 2009).
As expected, our data show that regulatory proteins such as
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protein kinases and transcription factors have, on average,
lower expression than the structural proteins discussed above.
However, each of these categories spans a large expression
range and surprisingly many of their members are in the top
25% of the proteome. Allowing these and similar comparisons
of estimated expression levels of individual proteins and
protein classes, as well as the corresponding transcripts,
our data can provide starting points for systems biological
modeling of the cell.

RNA-Seq already covers virtually the entire functional
transcriptome. Ultra-deep mapping of the proteome is now
also becoming possible with proteins identifiable for nearly all
transcripts with an expected biological function in the cell
type. Thus, both transcriptomics and proteomics are ap-
proaching completeness. Given the rapid technological pro-
gress in both fields, we predict that the required depth of
10 000–12 000 genes will be routinely reachable soon.

Materials and methods

HeLa cells lysate

Cell pellets were flash frozen in liquid nitrogen and stored at �801C.
Cells were lysed in a buffer consisting of 0.1 M Tris–HCl, pH 8.0, 0.1 M
DTT, and 2% SDS at 991C for 5 min. After chilling to room temperature,
the lysates were sonicated using a Branson type sonicator and then
were clarified by centrifugation at 16100 g for 10 min. Protein content
was determined using a Fluorescence Spectrometer.

Protein fractionation by gel filtration

In all, 0.100 ml of the cell lysate containing 10 mg of total protein was
loaded onto a Superdex 200 10/300 GL column (GE Healthcare Bio-
Sciences AB, Uppsala) equilibrated with TNS buffer composed of 0.1 M
Tris–HCl, pH 8 buffer, 0.1 M NaCl and 0.2% SDS. Proteins were eluted
with TNS buffer and 2 ml fractions were collected.

Protein digestion and peptide fractionation

Detergent was removed from the lysates and the proteins were digested
with trypsin, LysC, or Gluc using the FASP protocol (Wisniewski et al,
2009b) using ultrafiltration units of nominal molecular weight cutoff of
30 000 (Cat No. MRCF0R030, Millipore). The eluted peptides were
fractionated according to the previously described pipette tip protocol
(Wisniewski et al, 2009a).

Mass spectrometry

The peptides were purified on StageTips (Rappsilber et al, 2007).
Eluted peptides were separated on a reverse phase C18 column (40 cm
long, 75mm i.d., 1.8mm beads, Dr Maisch GmbH, Germany) using the
EASY-nLC system (Proxeon Biosystems now Thermo Fisher Scienti-
fic). MS analysis was performed using LTQ-Orbitrap Velos instrument
(Thermo Fisher Scientific; Olsen et al, 2009). Data were acquired in
data-dependent mode. The survey scans were acquired at a resolution
of 30 000 at m/z¼400 in the Orbitrap analyzer followed by up to 10
fragmentation events (HCD) in the collision cell. The fragment ions
were also detected in Orbitrap analyzer resulting in high-resolution
and high-accuracy fragmentation spectra.

RNA-seq

Total RNAwas extracted from HeLa cell pellets using the RNAeasy Mini
Spin columns protocol from Qiagen and an elution volume of 50 ml.
RNA quality (RIN 10) and quantity (B1 mg/ml) were assessed using an
Agilent RNA 6000 LabChip. The RNA extracts were stored at �801C.

The Illumina RNA-seq sample preparation protocol and kit (RS-100-
0801) as well as the Illumina Paired End library preparation protocol
and kit (PE-102-1001) were used for library preparation. Briefly, total
RNA was enriched for poly-A tailed transcripts using magnetic beads
with poly-T oligonucleotide coating. The enriched RNA was fragmen-
ted into small pieces using divalent cations and elevated temperature
(941C, 5 min). RNA fragments were copied into cDNA using a reverse
transcriptase and random priming (Invitrogen SuperScript II). Second-
strand synthesis was performed in the same reaction using RNaseH
and DNA polymerase I. Overhangs were converted into blunt ends
using T4 DNA polymerase (50 overhang fill-in) and Klenow DNA
polymerase (30–50 exonuclease activity). A deoxyadenosine was added
to the 30 end of the blunt and phosphorylated DNA fragments using
the polymerase activity of Klenow fragment. T4 DNA ligase was
used to ligate forked adapters and a gel length selection performed
(B200 nt insert size). Molecules were then amplified with over-
hanging primers that extend the adapters to their final length required
for the sequencing.

The library was sequenced on two Illumina Genome Analyzer
IIx lanes following vendor instructions for Multiplex Single
Read sequencing and using 76þ 7 cycles. Protocols were followed
except that an indexed jX174 control library was spiked into each
lane, yielding about 1% of sequencing reads per lane. The jX174
control reads were aligned to the corresponding reference sequence to
obtain a training data set for the base caller Ibis (Kircher et al,
2009), which was then used to generate base calls and quality
scores.

Data availability

All RNA-seq sequence data is available from the European Nucleotide
Archive (ENA) under the study accession ERP000959, and from
ArrayExpress under accession number E-MTAB-823. All mass spectro-
metric raw files are uploaded to TRANCHE and can be accessed using
the following hash codes: Hela_01_trypsin;phajxUWNFSW8gBCd3o
QJ;Hash:dLuhvyddHELlkrXVJa1QYTHGOdFDttpFksh8iBqBT4kNyESmVF
znzAtXe4qS+9OCtJ//9y7DfdlcEIotcGCerr/ytCUAAAAAAAAWwQ¼¼;He
la_01_LysC;GRtGG4GkZoo6pYZEbyd0 Hash:r6G4xDnc8deuSSpRMDkYk7
hJsjvuWrMFoJGenuTEdtYN3zMhGDXaOl/QheYipLUoe/37f1lrYSþGQh
RgDHþK5gfKns4AAAAAAAAWNg¼¼;Hela_01_GluC;34NGEzbCmXHXr
09aPqOV;Hash:GGDWG1xveOYXVD5DkiSVybfbp41fzZzeNiDJdVCcOmm
XaFjLTNdOzOIPO0aCXkvnInsZ2kO4hvq3WZ9IWþO8yenBþNQAAAA
AAAAY7Q¼¼Hela_02_trypsin;gfAYWK0ljixAdVddEQH5;Hash:6YBO0zZhl
HORAXzJ;þUqC4i6tlnlLw5OAV5lOzkoW1dYVueWQD9M6kþ 4YvQ/43i
E7kalHþ 3LPJT5wqq27TlG/zdXNJeAAAAAAAAAsfg¼¼;Hela_02_LysC;h
UU1ZRgB61kmdtEJHmX4;Hash:Bz9hlKJ5EaEq/rgoVH0þ fHehRgTSaCc
D2;879Q1JnJm3d9sFaCpNgFnPPZT9WFu5K5mXKz8o1B9qaK7WBFxdFPu
2ThkAAAAAAAAPmA¼¼Hela_02_GluC;qEFG57NWsYggbpjHmQ5H;Ha
sh:LEqiT5pWYpusY/SWaXJw8A3GcRAspRucqyb6L/nKSG9AywRpBL8h
kBn8rþ sZP3fXTWC2PoLNmhOpqkbg6lQR63GHeyAAAAAAAAAftQ¼¼.

Gene and transcript quantification

Raw reads of two sequencing lanes were combined, adapters trimmed
and reads shorter than 70 nt, or with more than five bases below a
quality score of 15 (PHRED-scale), removed. The processed reads were
aligned to the human reference genome (hg19/GRCh37 excluding
additional haplotypes) using TopHat v1.0.13 (Trapnell et al, 2009) and
transcripts and genes of the Ensembl (Hubbard et al, 2009) release 59
were quantified using Cufflinks v0.8.3 (Trapnell et al, 2010). This
method allows up to 40 equally good mappings of a read. In cases
where a read can be mapped to multiple transcripts, each transcript
is assigned one per number of mappings in the quantification step.
If 440 potential mapping locations are identified, then the read is
not considered for quantification.

Data analysis

Raw files from MS analysis were processed using the MaxQuant
computational proteomics platform (Cox and Mann, 2008) version
1.1.1.36. The peak list generated was searched against the IPI human
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database (ipi.HUMAN.v3.68.fasta) with initial precursor and fragment
mass tolerance set to 7 and 20 p.p.m., respectively. Peptides with
minimum of six amino-acid length were considered with both the
peptide and protein FDR set to 1%.

All MS data were mapped to gene identifiers obtained from Ensembl
for comparison with the RNA-seq data. For the quantitative analysis,
the iBAQ intensity and the FPKM values were used for proteome and
transcriptome data, respectively.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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