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In the biological sciences, model organisms have been
used for many decades and have enabled the gathering of
a large proportion of our present day knowledge of basic
biological processes and their derailments in disease. Al-
though in many of these studies using model organisms,
the focus has primarily been on genetics and genomics
approaches, it is important that methods become avail-
able to extend this to the relevant protein level. Mass
spectrometry-based proteomics is increasingly becoming
the standard to comprehensively analyze proteomes. An
important transition has been made recently by moving
from charting static proteomes to monitoring their dy-
namics by simultaneously quantifying multiple proteins
obtained from differently treated samples. Especially the
labeling with stable isotopes has proved an effective
means to accurately determine differential expression
levels of proteins. Among these, metabolic incorporation
of stable isotopes in vivo in whole organisms is one of the
favored strategies. In this perspective, we will focus on
methodologies to stable isotope label a variety of model
organisms in vivo, ranging from relatively simple orga-
nisms such as bacteria and yeast to Caenorhabditis el-
egans, Drosophila, and Arabidopsis up to mammals such
as rats and mice. We also summarize how this has opened
up ways to investigate biological processes at the protein
level in health and disease, revealing conservation and
variation across the evolutionary tree of life. Molecular
& Cellular Proteomics 9:11–24, 2010.

Well before the genomics era, the foundation for our current
understanding of genetics was largely established by biolog-
ical research performed using model organisms. Early genet-
ics discoveries such as the chromosome theory of heredity
and bacterial conjugation were first described in the fruit fly
Drosophila melanogaster (1) and the bacterium Escherichia
coli (2), respectively. Apart from these organisms, most of the
current knowledge of development, evolution, and genetics
originates from other classical model organisms including the
bakers’ yeast Saccharomyces cerevisiae, the nematode Cae-
norhabditis elegans, and the mouse Mus musculus. Nowa-

days, they hold a primary position in the analysis of biological,
disease, and pharmaceutical processes in modern biology
and probably claim an even more promising position in future
biological research. With increasing numbers of completed
genome annotations, however, the focus is also shifting
somewhat from these classical model organisms toward or-
ganisms that have unique genetic properties, are economi-
cally interesting, or are more directly related to human disease
such as puffer fish, rice, and Plasmodium, respectively. Conse-
quently, the definition of a model organism has broadened over
the past decade, and today model organisms are found in
nearly all branches of the “tree of life,” providing extensive
means to further investigate conservation or diversification of
biological principles through evolution (3). This has gained mo-
mentum tremendously by the completion of genome sequenc-
ing efforts in hundreds of organisms. In relatively simple orga-
nisms (bacteria and yeast), this has allowed the systematic
investigation of multiple basic biological processes conserved
through evolution (e.g. apoptosis (4) and vacuolar transport (5)).
Higher organisms are highly useful for the study of complex
traits, which is facilitated by large collections of mutant strains
(6, 7). This is of particular relevance where model systems of
human physiology, either in a healthy or diseased state, are
studied. Fruit flies and C. elegans, the “classical” model orga-
nisms, have been used as models for a variety of diseases (8)
but also for natural processes like aging (9, 10), sleep (11, 12),
and olfaction (13). Mouse and rat models have been a long-
standing model for human biology (14), especially in cancer (15).
Particularly the availability of strains engineered to represent
human diseases has increased our understanding of patholog-
ical processes tremendously (16).

So far, the focus has primarily been on genetic and genomic
aspects of these processes and disorders, but with the mat-
uration of proteomics techniques, ways to study these at the
protein level in a meaningful way are coming within reach.
Over the last decade, proteomics research has experienced
significant advances and has evolved into an indispensable
technology to investigate the proteomic composition of bio-
logical samples. Proteomics has shifted from the analysis of
small sets of proteins toward the comprehensive investigation
of a much larger number of proteins expressed in a cell,
tissue, or organism (17). Nowadays, a typical proteomics ex-
periment is peptide-centric and starts with the enzymatic
digestion of a protein mixture followed by fractionation using
one or more chromatographic steps to reduce sample com-
plexity (18, 19) as illustrated in Fig. 1. Peptides are fragmented
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in the mass spectrometer as they elute, and subsequent
matching of fragmentation profiles against a protein database
leads to peptide and protein identification. When performed at

a large scale, this can be used for the identification of thou-
sands of proteins in cells or subcellular structures (20–23).
Although such qualitative approaches are fruitful in providing

FIG. 1. Qualitative proteomics work flow. Proteins are extracted, digested, and separated by strong cation exchange. Each strong cation
exchange fraction is then analyzed by nano-LC-MS/MS. Peptide fragment spectra are used in a database search to identify the peptide
sequence and the corresponding protein.
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information on proteins present in cells or tissues, they largely
ignore the dynamics of protein expression when different
conditions are to be investigated. This is highly relevant be-
cause in general only the proteins that differ between biolog-
ical states (e.g. healthy/diseased) are likely to be of primary
interest. Because mass spectrometry is not inherently quan-
titative, it is beneficial to add an internal standard as a refer-
ence for the peptide of interest. For large scale experiments,
often all proteins or peptides in one sample are modified with
a stable isotope-coded mass label. After mixing the labeled
sample with an unmodified sample, the intensity ratio be-
tween the modified peptide and the unlabeled peptide accu-
rately reflects the change in expression level.

Various approaches have been developed for the incorpo-
ration of stable isotopes into proteins that can be divided into
in vivo and in vitro methods. In the former, isotope-enriched
compounds (salts or amino acids) are added to the growth
media that can be metabolized by the cell and incorporated
into proteins. In vitro labeling can be established using chem-
ical derivatization of proteins or peptides after protein extrac-
tion. The choice for either approach depends on the biological
system under investigation, but there are a few considerations
that should be taken into account because of their impact on
the experimental work flow. In Table I, some of the strengths
and weaknesses of both metabolic and chemical labeling
methods are summarized.

One major consideration for labeling in vivo (metabolic) or in
vitro (chemical) critically depends on whether the biological
sample in question can metabolically incorporate the isotope
label. Metabolic labeling requires the addition of an isotopi-
cally enriched element (e.g. 13C, 15N, or 18O in salts or amino
acids) to the growth media in a form that makes it available for
incorporation into the entire organism, tissue, or cell. In con-
trast, chemical labeling occurs after protein extraction and
therefore is completely independent of the source and prep-
aration of the sample. This has the advantage that virtually any
type of biological sample can be labeled, including human
tissue or body fluids. Additionally, the time needed for this
type of labeling is in general much shorter than when a label
is incorporated metabolically where it may take weeks to in
vivo label organisms or cells depending on the growth rate.
This can even increase to a few months if a secondary label-
ing step is required such as is the case in the 15N labeling
procedure of fruit flies and worms by feeding them on labeled
yeast and E. coli, respectively.

The great advantage of metabolic labeling becomes clear
when the proteomics work flow is considered. Fig. 2 gives an
overview of the different positions in the experimental work
flow where the internal standard can be introduced. Clearly,
the best place to introduce an internal standard is by meta-
bolically incorporating the stable isotope into living organisms
or cells, thereby producing the lowest variation before any
sample processing occurs (Fig. 2, left). When the internal
standard is introduced further downstream in the work flow,

higher levels of variation can be expected due to parallel
sample processing as is the case with chemical derivatization
of intact proteins (e.g. with ICAT and isotope-coded protein
labeling (ICPL)1 (24, 25)) (Fig. 2, middle) or with chemical
labeling of peptides such as isobaric tag for relative and
absolute quantitation (iTRAQ) and stable isotope dimethyl
labeling procedures (26–28) or proteolytic digestion in 18O-
labeled water (29, 30) (Fig. 2, right).

CHEMICAL AND LABEL-FREE APPROACHES FOR QUANTITATIVE
PROTEOMICS

The advantage of using iTRAQ labeling over other (chemi-
cal) labeling strategies is the possibility to simultaneously
analyze up to eight biological samples in one experiment by
labeling peptides (primary amino groups) with isobaric tags
that differ in reporter and balancer groups (26, 31). Quantita-
tive information is obtained by comparing the unique reporter
groups in the fragmentation spectrum, and therefore this la-
beling strategy is fully MS/MS-dependent, and quantitative
information is only obtained from peptides that were sub-
jected to fragmentation. The only other quantitative method
that exclusively relies on fragmentation data is the label-free
method of spectral counting. The abundance of a protein can
be estimated by counting the number of sampling events of a
peptide from this protein. It has been observed that the num-
ber of assigned MS/MS spectra directly correlates with pro-
tein abundance. In this approach, samples are analyzed and
processed separately, and protein lists are compared in terms
of sampling events per protein. Although spectral counting
has proven to be very reliable at measuring large changes
between proteins, reliability drops dramatically when smaller
changes are estimated (32). In contrast, the other (chemical)
labeling strategies are based on chromatographic intensities
of intact peptide signals and do not require fragmentation for
quantitation. However, not necessarily all peptides can be
used for quantitation depending on the labeling strategy. For
instance, in ICAT labeling only cysteine-containing peptides
can be used for quantitation, and only lysine-containing pep-
tides and protein N termini can be used in ICPL. Additionally,
when trypsin is used as the proteolytic enzyme in ICPL, pos-
sibly longer peptides may be expected due to the modifica-
tion of lysine residues. Trypsin will only cut after arginine
residues, and the resulting longer peptides may be more
difficult to identify. This is not the case for labeling strategies
based on peptide labeling or label-free quantitation based on
the ion intensity (MS mode) of peptides. Similarly to spectral
counting, samples are analyzed and processed separately,
but this strategy relies on extracting mass spectrometric peak
areas for all peptides that are subsequently integrated for their

1 The abbreviations used are: ICPL, isotope-coded protein labeling;
iTRAQ, isobaric tag for relative and absolute quantitation; SILAC,
stable isotope labeling with amino acids in cell culture; SMIRP, subtle
modification of isotope ratio proteomics.
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respective retention times (33). A more detailed description of
chemical and label-free approaches in quantitative proteomics
and a comparison between them are not the focus of this
perspective, especially as a number of excellent reviews have
been published in the last few years covering these subjects (17,
34–37). Instead, we will focus specifically on strategies using
metabolic incorporation of mass labels in vivo in whole
organisms.

METABOLIC LABELING FOR QUANTITATIVE PROTEOMICS

Recently, the development of strategies to label cells in
culture with stable isotopes (stable isotope labeling with

amino acids in cell culture (SILAC)) has found broad applica-
tion and continues to expand to a wide range of cell lines. A
number of first rate studies have been published (38, 39) and
reviewed elsewhere (35, 40) that show the power of SILAC.
Nevertheless, some limitations of this labeling procedure
should be considered. For instance, the cells or organism
should be auxotroph for the labeled amino acid(s), either by
mutations or by using essential amino acid(s), to ensure that
the labeled amino acid is the only source for protein synthesis.
The widespread metabolic conversion of arginine to proline is
an undesired side effect when arginine is used in SILAC

TABLE I
Comparison of strengths and weaknesses of various metabolic (in vivo) and chemical (in vitro) labeling techniques

ETD, electron transfer dissociation; ECD, electron capture dissociation; �, beneficial; �, hampering.

Labeling method Cost Strengths Weaknesses

Metabolic labeling (in vivo)
SILAC � Incorporation at the organism level (lowest

variation). Available (free) quantitation
software.

Not applicable to human samples. Arginine-
to-proline conversion. Expensive and
slow. Enzymes other than trypsin and/or
Lys-N may produce non-quantifiable
peptides. Auxotroph for the labeled
amino acid(s).

15N labeling � Incorporation at the organism level (lowest
variation). All peptides can be used for
quantitation regardless of the enzyme

Not applicable to human samples.
Expensive and slow. Available
quantitation software. Unknown mass
difference prior to identification.

13C labeling � Incorporation at the organism level (lowest
variation). All peptides can be used for
quantitation regardless of the enzyme.

Not applicable to human samples.
Expensive and slow. Available
quantitation software. Unknown mass
difference prior to identification. Isotope
distribution might hamper identification.

SMIRP �/� Incorporation at the organism level (lowest
variation). All peptides can be used for
quantitation regardless of the enzyme.

Not applicable to human samples. Slow.
Available quantitation software.

Isotope-depleted
labeling

� Incorporation at the organism level (lowest
variation). All peptides can be used for
quantitation regardless of the enzyme.

Not applicable to human samples.
Expensive and slow. Available
quantitation software. Identification
requires ECD or ETD. Quantitation at the
protein level.

Chemical labeling (in vitro)
ICAT �/� Applicable to any sample. Fast. Incorporation at the protein level (moderate

variation). Only Cys-containing peptides
can be used for quantitation.

ICPL �/� Applicable to any sample. Fast. Incorporation at the protein level (moderate
variation). Only Lys-containing peptides
and the protein N terminus can be used
for quantitation. Trypsin cleaves
C-terminal to arginine residues only.

iTRAQ �/� Applicable to any sample. Fast.
Simultaneous analysis of 8 labeled
samples. No increase in complexity at
the MS level.

Incorporation at the peptide level (high
variation). Quantitation is based on 1 or a
few tandem mass spectra. Requires
mass spectrometers that can analyze the
low m/z region.

18O labeling � Applicable to any sample. Cheap and fast. Incorporation at the peptide level (high
variation). Difficult to reach complete
labeling. Available quantitation software.

Dimethyl labeling � Applicable to any sample. Cheap and fast.
Automation is possible.

Incorporation at the peptide level (high
variation). Identification issues due to the
number of variable modifications.

Quantitative Proteomics by Metabolic Labeling

14 Molecular & Cellular Proteomics 9.1



labeling (41, 42). This effect is illustrated in Fig. 3A where a
mass spectrum shows the desired unlabeled and double la-
beled peptide (�16 Da, heavy lysine and arginine) but also

additional unwanted peaks at positions that correspond to
incorporation of single (�6 Da) and double (�12 Da) labeled
proline residues in the peptide. A significant amount of signal
can reside in these peaks and can negatively affect quantita-
tion. This phenomenon is not apparent in the case of meta-
bolic 15N labeling using salts and can be visualized by com-
paring the mass spectrum in Fig. 3A with that in Fig. 3B where
the same peptide was 15N-labeled (11 nitrogen atoms, �11
Da). Although the arginine-to-proline conversion is most likely
still taking place, the effect is eliminated because in this type
of labeling the mass of the proline-converted peptide is similar
to the mass of the precursor peptide. However, the mass
difference between an unlabeled and 15N-labeled peptide is a
priori unknown during mass spectrometric analysis and be-
comes apparent only after identification. This might hamper
sophisticated acquisition software that only selects regulated
peptides for fragmentation and/or automated quantification
prior to identification. When using 15N, suboptimal labeling
(exemplified by the red colored isotope at m/z 410.73 in Fig.
3B) is a recurrent issue that should be accounted for to obtain
correct abundance ratios (43). Nevertheless, the procedure of
13C or 15N substitution in living organisms is very attractive
because little to no side effects (cytologically or morphologi-
cally) have been reported (44, 45). Moreover, it is not essential
to achieve complete labeling. The incorporation of for in-

FIG. 2. Strategies for quantitative proteomics. Stable isotopes
can be incorporated at different stages of the quantitative work flow
and are indicated in black. The methods are metabolic labeling (left),
protein labeling (middle), and peptide labeling (right). Relative expres-
sion levels are obtained by mass spectrometry where the signal of the
unlabeled peptide is compared with that of the labeled peptide.

FIG. 3. Overview of typical mass spectra that are obtained from different metabolic labeling strategies. In SILAC (A), labeled arginine
can be converted to proline, indicated in red in the peptide sequence, resulting in peaks that are 6 Da higher than the labeled peptide. If such
peaks are formed in heavy nitrogen labeling (B), they appear at the same position as the 15N-labeled peptide because they are isobaric. The
red colored isotope at m/z 410.73 is a product of suboptimal 15N labeling. Minor enrichment of 13C in SMIRP leads to quantifiable peptide
signals (C), whereas higher incorporation is used to determine protein synthesis and degradation (D).
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stance 1.5% 13C, a strategy termed subtle modification of
isotope ratio proteomics (SMIRP) (Fig. 3C), is already enough
to obtain good quantitative data, but automated quantitation
is more difficult because of the lack of available software.
Another application of incomplete labeling is to determine
protein synthesis and degradation by monitoring the incorpo-
ration of labeled 13C in a time-dependent manner (Fig. 3D).
Also, in these cases, the lack of suitable software hampers
data processing so far.

The availability of software solutions for the analysis of
quantitative proteomics data generated by LC-MS is exten-
sive but still limited. This is caused by the fact that only a
few solutions might be available for a specific type of label-
ing analyzed on a particular mass spectrometer. Software
tools to analyze quantitative LC-MS data are usually devel-
oped for specific types of mass spectrometers, thereby
restricting these tools to analyze data from only those in-
struments. Some labeling strategies such as SMIRP and
isotope-depleted labeling even lack software solutions to
automatically perform quantitation, whereas others (15N and
13C labeling) seem restricted to a few available software
tools. An overview of software solutions has been published
(46).

In recent years, increasing numbers of model organisms
are being used for comparative proteomics, and various
methodologies have been developed to metabolically label
them. Shown in Fig. 4 is a compendium of the current “tree
of metabolically labeled life,” and it can be seen that species
in almost any branch can be and have been labeled. Table
II gives a more detailed overview of these species together
with the type of metabolic labeling applied. Quantitative
proteomics in (model) organisms, either by metabolic or
chemical labeling, can be extremely powerful to elucidate
biological processes. Most of these studies focus on the
effect of an isolated treatment (e.g. stress condition or
growth factor) of cells grown in a Petri dish, which should be
regarded as a somewhat artificial system because cells
have often been maintained for thousands of cell doublings
over many years. Moreover, any cell system neglects the
differences in responses that would normally occur in an
organism (because of the nature of the cells or organs) or
communication between them. If the aim is to understand
cells in their natural environment, one should aim to perform
studies in the intact organism. There is no doubt that quan-
titative approaches will be essential in uncovering relevant
players, and consequently it is important to develop quan-
titative proteomics methods in model organisms. Therefore,
here we present an overview of intact model organisms that
have been metabolically labeled for the purpose of quanti-
tative proteomics. Per species we provide the current status
of the methodology as well as examples of their application
to biological problems.

OVERVIEW OF METABOLICALLY LABELED SPECIES

Prokaryotes

The prokaryotes E. coli, Deinococcus radiodurans, and
Synechocystis spp. were initially used to establish different
15N metabolic labeling methodologies. In one of the first stud-
ies reported to accomplish this, unstressed and Cd2�-
stressed E. coli were grown on normal and heavy isotope
(13C, 15N, and 2H)-depleted media, respectively (47). After
mixing aliquots from both cultures, relative expression levels
of intact proteins were determined by fitting the experimental
results with the predicted shapes of the calculated isotopic
envelopes. Although this procedure readily lends itself for the
determination of relative expression levels, identifying these
proteins is somewhat more complicated and requires more
sophisticated fragmentation methods such as electron cap-
ture dissociation and electron transfer dissociation to obtain

FIG. 4. Tree of metabolically labeled life. Branch lengths are not
proportional to evolutionary distance.
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sequence information for identification purposes (48). To
overcome this identification issue, proteins can be digested
into peptides for both quantitative and qualitative information.
This procedure was developed by growing D. radiodurans on
fully 15N-enriched (�98%) media after which proteins were
digested into peptides to facilitate protein identification and
quantitation (49, 50). A third method to determine protein
expression levels uses the labeling of proteins with a subtle
enrichment (�1–2%) of a stable isotope instead of using fully
enriched (�8%) labeled media. This approach, referred to as
SMIRP, has been used to label Synechocystis spp. with var-
ious 13C/12C isotope ratios to determine the feasibility of this
approach. Optimal results were obtained with enrichments as
low as �1–2% 13C that have no effect on either data-depend-
ent acquisition or database searching algorithms but yield a
measurable effect on peptide isotopic distribution of which an
isotope ratio can be inferred (51). A method similar to the
labeling procedure of D. radiodurans (i.e. using fully enriched
heavy nitrogen) included the incorporation of stable isotope-
labeled 13C atoms in the hyperthermophilic crenarchaeon
Sulfolobus solfataricus. In this approach, three different ver-

sions of the same protein are produced (unlabeled, 15N-, and
13C-labeled), allowing for the analysis of three different sam-
ples in a single experiment (52). The same group also inves-
tigated the applications and limitations of 15N labeling and
showed that stable isotope labeling with heavy nitrogen in
combination with mass spectrometric detection provides an
excellent tool for studying protein dynamics (53, 54). This was
further corroborated in another study where the archaeon
Methanococcus maripaludis was 15N-labeled, and protein ex-
pression levels were validated using real time PCR (55). An
additional benefit of 15N labeling is its use to increase the
number and confidence of protein identifications. In 15N la-
beling, the number of nitrogen atoms in a peptide can easily
be determined from the mass difference between labeled and
unlabeled peptide pairs, which can be used as an additional
criterion to accept or refute peptide identification (56). Re-
cently, Sphingopyxis alaskensis has been 15N-labeled to in-
vestigate normalization and statistical analysis in quantitative
proteomics-generated data (57). Two of the first applications
utilizing metabolic labeling of a prokaryote included 15N la-
beling and SILAC or a combination thereof. In one study,
Methanosarcina acetivorans was 15N-labeled to investigate
acetate versus methanol growth conditions (58). In the other
study, changes in the membrane proteome during stationary
phase adaptation of Bacillus subtilis were monitored, and
both techniques showed similar valuable data for quantifica-
tion of bacterial membrane proteins (59). The SILAC proce-
dure has also extensively been investigated and applied to
E. coli cells. Several different labeled amino acids were used
to metabolically label E. coli, including lysine (60, 61), leucine
(61–63), glycine (61), and methionine (61, 64).

Fungi

S. cerevisiae—The yeast S. cerevisiae fulfills an important
dual role, being an industrially applied organism in itself while
serving as one of the prime model organisms for higher eu-
karyotes. First, this microorganism is extensively used in in-
dustry as it has the ability to produce for instance alcohol and
carbon dioxide. In addition, it can be used as a host for the
production of proteins and small molecules exploited by phar-
maceutical companies for the production of insulin or penicil-
lin (65). Second, yeast has been used for a long time as a
model organism in the field of molecular biology. Properties
such as the rapid adaptation and easy growth under numer-
ous conditions, its lack of pathogenicity, and the availability of
powerful genetic manipulation techniques make this organism
perfectly suited for laboratory experiments. In addition, it was
the first eukaryote to have its genome sequenced in 1996,
resulting in the prediction of �6000 protein-coding genes
(66). Since then, large amounts of data based on genome,
transcriptome, proteome, and metabolome studies have been
generated. A great deal of this information is curated, stored,
and managed in the on-line database Saccharomyces Ge-

TABLE II
Overview of studies using metabolically labeled organisms depicting

labeling strategy and corresponding references

Class and species SILAC 15N 13C Refs.

Prokaryotes
E. coli � �a �a 47, 56, 60–64
D. radiodurans � 49
Synechocystis spp. � �b 51
S. solfataricus � � 52–54
M. maripaludis � 55
M. acetivorans � 58
B. subtilis � � 59
S. alaskensis � 57

Alveolata
Plasmodium falciparum � 146

Plants
G. max � 101
S. tuberosum � 102
A. thaliana � � 105–113
S. lycopersicum � 114

Fungi
S. cerevisiae � � 23, 71–83, 85,

87–90
A. flavus � 95, 97

Drosophila and C. elegans
D. melanogaster � 43, 126, 128,

129
C. elegans � 43, 126, 127

Fishes
Oncorhynchus mykiss � 144

Birds and mammals
G. gallus � 130
Rattus norvegicus � 131–133
M. musculus � 134

a These labeling strategies are based on heavy isotope depletion
(47).

b This strategy is based on subtle isotope enrichment (�1–2%) (51).
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nome Database (67). In the postgenomics era, information
from studies at different genomic levels is combined in a
systems biology approach, resulting in a comprehensive un-
derstanding of eukaryotic cell biology. In this context, it is
expected that yeast will continue to provide new knowledge
and insights (68–70).

Metabolic labeling for quantitative proteomics is extensively
applied in yeast and can be accomplished by two different
approaches. Stable isotope-labeled atoms such as 15N can
be incorporated by growing yeast in media containing labeled
ammonium sulfate as the sole nitrogen source (71). The other
method involves the incorporation of one or more stable
isotope-labeled amino acids into the proteome of yeast. The
former methodology was used in 1999 by Oda et al. (72) to
uniformly 15N label yeast, which they used to investigate
protein expression as well as site-specific changes in phos-
phorylation levels. They reported that relatively small changes
in phosphorylation (�20%) can be reliably detected from
small amounts of gel-separated proteins (72). Yates and co-
workers (73–78) extensively used 15N-labeled yeast to estab-
lish methodologies for the analysis of quantitative proteomic
samples as well as to address biological questions. For in-
stance, by combining metabolic labeling with multidimen-
sional protein identification technology, they described a sys-
tem useful for detailed quantitative proteomics analysis (73)
that they used to investigate the correlation between mRNA
and protein expression levels (74). This approach was com-
plemented with a correlation algorithm called RelEx for the
automated analysis of quantitative data (75) and an algorithm
called The Atomizer to determine isotope enrichment levels
(76). Both approaches were validated using complex mixtures
with known enrichment levels of 15N-labeled yeast, and more-
over, the RelEx algorithm was applied to the study of NaCl
osmotic stress on the protein level in yeast. An alternative
data acquisition method that was developed using 15N-la-
beled yeast by Yates and co-workers (77) relies on data-
independent analysis where quantitative results are deter-
mined directly from tandem mass spectra (MS2) using a
modified version of RelEx. In addition, this group also evalu-
ated the use of an LTQ-Orbitrap hybrid mass spectrometer for
quantitative analysis using labeled yeast (78). Other groups
that focused on more fundamental research using 15N-labeled
yeast investigated top-down quantitative proteomics ap-
proaches (79) and the correlation between spectral counting
and metabolic labeling (80, 81). Besides this important basic
research, biological effects like response to nutrient limita-
tions (82), adaptation to anaerobiosis (83, 84), or phosphor-
ylation level changes related to glucose activation (85) were
studied using 15N-labeled yeast.

The other metabolic labeling strategy established in yeast
involves the incorporation of one or more labeled amino acids.
The first studies describing such an approach used deuteri-
um-labeled amino acids such as triple deuterated methionine
(Met-d3) and serine (Ser-d3) and double deuterated tyrosine

(Tyr-d2) (86). Deuterated leucine was also used, but it differed
in the number of deuterium atoms in the amino acid. In one
case, triple deuterated leucine (Leu-d3) was used (87),
whereas in the other case, decadeuterated leucine (Leu-d10)
was used (88). In both cases, a yeast strain was used that is
auxotrophic for leucine, ensuring that all leucine was replaced
by labeled leucine. Once established, the Leu-d10 metabolic
labeling approach was used to investigate the response of the
yeast proteome to H2O2 (89). Besides labeled leucine, also
stable isotope-labeled arginine and lysine were used to label
yeast. A double auxotroph strain was used to uniformly label
yeast to study the changes in pheromone-induced phosphor-
ylation (90). However, a disadvantage of using labeled argi-
nine in eukaryotes is that the accuracy of peptide ratio calcu-
lation is compromised by the metabolic conversion of arginine
to proline, which seems to be quite efficient in yeast (41, 42).
Several solutions have been published (91, 92) to correct for
this effect to ensure accurate quantitation. A study that used
labeled lysine only focused on determining factors that pre-
vent complete proteome analysis (23). The sequencing speed
of the mass spectrometer was found as one of these factors.
The sequencing speed was determined by comparing the
number of identified “light” and “heavy” peptides. If the se-
quencing speed is sufficiently high, both forms of a SILAC pair
should be sequenced and identified, but this was shown to be
true only for the more abundant peptides. The other factor
that limited complete proteome coverage was the restricted
dynamic range of the mass spectrometer compared with the
dynamic range of the yeast proteome (i.e. 100 versus 10,000)
(93). The dynamic range of the mass spectrometer was de-
termined by comparing the intensity of the most abundant
SILAC pair with the least abundant pair in the same mass
spectrum (23). Recently, the same group investigated and
quantified the proteomes of haploid and diploid yeast. By
using the same labeling strategy in combination with several
different fractionation techniques, they increased the number
of identified proteins to a level of 4,399 proteins. In addition,
they showed that mass spectrometry is as sensitive as other
protein detection techniques such as green fluorescent pro-
tein and tandem affinity purification tagging (94).

Aspergillus flavus—Recently, two studies were published
that described the SILAC labeling of the fungus A. flavus by
growing this multicellular prototroph on media containing
heavy arginine. This amino acid was chosen over lysine be-
cause it occurs at a frequency of about 6% in the proteome
(95). By determining the incorporation efficiency of 50 pro-
teins, they found an average enrichment level of 78%, which
is similar to the enrichment level of 81% reported by the
SILAC labeling of Arabidopsis suspension cells (96) (see
above). This suboptimal enrichment level was sufficient to
quantify protein changes in response to environmental stimuli
regulating biosynthesis of the carcinogen aflatoxin (95). An-
other study by the same group, however, showed that this
suboptimal enrichment hampered the quantification of intact
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proteins that have a large number of arginine residues. Here,
they established a quantitative top-down proteomics ap-
proach using this labeled fungus and showed that proteins
with few arginines can readily be identified and quantified (97).
However, they suggest to reduce endogenous amino acid
incorporation by using an arginine auxotroph strain, thereby
facilitating straightforward quantification of proteins that con-
tain larger number of arginines (97).

Plants

Metabolic labeling of plants dates back to the mid-sixties of
the last century where labeled nitrogen (in the form of ammo-
nium sulfate) was added in tracer amounts to a fertilizer and
used to evaluate the efficiency of fertilizer applications in rice
(Oryza sativa) (98). Metabolic incorporation of labeled nitrogen
was accomplished by growing rice hydroponically (i.e. using
mineral nutrient solutions instead of soil) and used to monitor
how the heavy nitrogen accumulated into specific parts of the
plant. Although only �30% enriched labeled nitrogen was
used ((15NH4)2SO4 and K15NO3) to investigate the uptake and
distribution of nitrogen, it was sufficient to spectroscopically
determine the amount of heavy nitrogen in different organs of
the rice plant (99). The same method was used to label the
potato plant (Solanum tuberosum) (100). Likely the first report
of a highly enriched, uniformly labeled plant was published in
1994 where soybean plants (Glycine max) were labeled with
�98% 15N to investigate nutrient absorption and metabolism
in human or animal studies (101). Next, potato plants were
uniformly 15N-labeled (�98%) for the purpose of structural
proteomics (102). Intact potato plants were obtained by grow-
ing aseptic seed potato tubers using a hydroponics setup for
a period of 93 days in a climate-controlled greenhouse on a
nutrient solution containing 99% potassium nitrate (K15NO3)
as the sole nitrogen source. Although S. tuberosum was the
first plant to be fully 15N-labeled, Arabidopsis thaliana is
considered the prime model species in plant biology, and
the genome of this plant was the first plant genome to be
sequenced (103). Complemented with methods to incorpo-
rate stable isotopes in vivo, this model has facilitated mass
spectrometry-based quantitative proteomics applied to
plant biology.

The genome of the flowering plant Arabidopsis is one of the
smallest among plants and was sequenced in 2000. It was
concluded that this plant has 11,000–15,000 protein families,
a number that is similar to other multicellular eukaryotes like
C. elegans and Drosophila (103). The current estimate is that
the Arabidopsis genome contains �27,000 genes encoding
35,000 proteins, but these numbers still change continuously
due to combined efforts by The Arabidopsis Information Re-
source that updates the Arabidopsis genome annotation an-
nually (104). Arabidopsis is an autotrophic species synthesiz-
ing all amino acids from inorganic nitrogen. This makes it
particularly difficult to metabolically incorporate labeled amino

acids into the proteome of the plant at high efficiency.
However, labeling enrichments of 70–80% have been re-
ported when suspension cells were grown in the presence
of exogenously supplied heavy arginine for 7 days (96). In
this experiment, SILAC was used to identify regulated glu-
tathione S-transferases and 14-3-3 proteins in response to
treatment with salicylic acid. Disadvantages of this ap-
proach include incomplete labeling; the use of only one
labeled amino acid, reducing the number of quantifiable
peptides; and expensive labeled amino acids that are
needed to reach efficient enrichments. This method is there-
fore limited to plant cell culture. Alternatively, these draw-
backs can be circumvented by growing cell cultures on
media containing highly enriched 15N as the sole nitrogen
source (105–108). Typically, cells were grown for around 21
days in modified liquid media containing �98% 15N, and
complete uniform incorporation was achieved. No detri-
mental isotopic effects were observed because the mor-
phology and growth rate of the 15N-labeled cells were in-
distinguishable from their 14N counterparts (105). In some
cases inverse labeling was performed to confirm results
(107, 108). Besides proteomics, also metabolomics can be
studied using this type of labeling, but this application is
evidently limited to metabolites that contain nitrogen (105,
106). Labeling with heavy carbon (13C) is therefore consid-
ered to be more efficient for this purpose.

As for the labeling of cell cultures, heavy nitrogen has been
used as the prime method to metabolically label intact plants
in vivo with high levels of enrichment. The first publication of
labeling of intact Arabidopsis for proteomics experiments was
in 2007 (109). Since then, several different 15N labeling tech-
niques have been investigated that include the comparison of
partial versus full labeling (110), the automated analysis of
uniformly labeled proteins using Mascot peptide identification
in conjunction with the trans-proteomic pipeline (111), and a
procedure referred to as hydroponic isotope labeling of entire
plants (112). A notable aspect in the method to metabolically
incorporate heavy nitrogen in intact plants is that almost all
proteomics studies on Arabidopsis grow plants in liquid me-
dia. It can be argued that biologically meaningful results can
only be obtained when plants are grown on solid medium,
thereby simulating growth conditions as natural as possible.
Leaf senescence was investigated in Arabidopsis by growing
the plants on solid labeled and unlabeled media (113). Re-
cently, the approach known as stable isotope labeling in
planta was published where the tomato plant Solanum lyco-
persicum was 15N-labeled by growing it for 2 months on solid
media (114). Besides metabolic labeling, most other quanti-
tative proteomics methods such as iTRAQ, ICAT, and 18O
labeling have been established in plants as well. For an over-
view of these techniques and their application in plants see
Thelen and Peck (115).
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D. melanogaster and C. elegans

Since the introduction of the nematode C. elegans and the
fruit fly D. melanogaster as model organisms in biological
research (1, 116, 117), many fundamental biological principles
have been disclosed using these species. They were the first
multicellular organisms to have their genomes sequenced in
1998 and 1999, respectively (118, 119), and nowadays, truly
outstanding resources are available for both species (120,
121) such as the on-line databases Wormbase (122) and
Flybase (123). The cellular complexity and the conservation of
biological pathways between these invertebrates and higher
organisms, including humans, opened the door for using them
as tools to study comparative human genetics (7, 8, 124, 125).
Indeed, many biomedical discoveries were fueled by C. el-
egans and D. melanogaster research. Of note, the processes
underlying diabetes and Alzheimer disease were first discov-
ered in C. elegans (for a review, see Ref. 8).

Although quantitative genetics and functional genomics
have been established in these model organisms for some
time now, quantitative proteomics based on metabolic label-
ing is only beginning to be introduced. Flies and worms can
be metabolically 15N-labeled by feeding them on uniformly
15N-labeled S. cerevisiae and E. coli, respectively (126).
Whereas flies are completely labeled after one generation,
worms need to be grown on labeled media for at least one
more generation after which second generation worms are
completely labeled. However, due to different protein turnover
rates in different tissues, it is necessary to analyze the enrich-
ment of different proteins to ensure complete labeling. La-
beled worms have been used to identify targets of insulin
signaling (127), and labeled flies have been used to identify
novel seminal fluid proteins (128) and proteins involved in the
maternal-to-zygotic transition (129). In addition, both species
have been used to optimize the identification and quantitation
of 15N-labeled proteins in comparative proteomics (43). The
method for metabolic labeling of both Drosophila and C.
elegans should be easily adoptable by many fly and worm
laboratories because it requires only minor adaptations com-
pared with routine protocols for growing flies and worms.
Therefore, we expect this approach to find broad application
in fly and worm developmental biology and beyond.

Birds and Mammals

One of the first reports of stable isotope labeling in birds
involved the partial SILAC labeling of the chicken Gallus gal-
lus. A diet that consisted of 50% labeled valine was fed to
6-day-old chickens to monitor the incorporation of the heavy
amino acid and thereby facilitate the determination of protein
turnover rates. Although these chickens are not fully labeled,
such an approach allows for the accurate detection of protein
turnover rates in vivo (130). Wu et al. (131) even extended the
metabolic 15N labeling approach to mammals by labeling rats
using a diet source that was supplemented with 15N-enriched

(�99%) algal cells. After feeding the rats for 44 days, enrich-
ment levels ranged from 74 to 92% depending on the type of
tissue (131). Using an improved labeling strategy, they in-
creased the enrichment to 94% throughout all tissues of the
rat, and these tissues can serve as internal standards to
facilitate the quantitative proteomics analyses of complex
mammalian tissue samples (132). For instance, labeled rat
brain was used to investigate the synaptosomal proteome of
the rat cerebellum during postnatal development (133). In
addition to labeled rats, other mammals such as mice can be
metabolically labeled by using a SILAC diet where second
generation mice showing complete labeling without obvious
effects on growth, behavior, or fertility were observed (134). In
these experiments, 13C-labeled lysine was used; it is an es-
sential amino acid, thus preventing synthesis from other (un-
labeled) sources of amino acids. As a result, it is not straight-
forward to use trypsin as the preferred protease because this
enzyme produces both C-terminal arginine and lysine pep-
tides of which only the lysine-containing peptides can be used
for quantitation. The endoprotease Lys-C, in contrast, pro-
duces only peptides that have a C-terminal lysine, making
Lys-C the preferred choice as the proteolytic enzyme. For
such studies, the recently introduced protease Lys-N may
provide a very elegant alternative in the future (135, 136).

A limitation to the use of labeled rats or mice could be the
investment that is required to produce isotope-enriched off-
spring. However, the amount of protein that can be collected
from basically every tissue, even from a single animal, is
sufficient for hundreds of proteomics experiments. Further-
more, if this material is produced from a wild type, commonly
used strain it could be distributed and used as an internal
standard even in facilities without resources to label these
animals themselves.

OUTLOOK

Although stable isotope labeling has been achieved across
many species in almost all branches of life (Fig. 4), there are
still some model organisms where the introduction of a label-
ing strategy would be very useful. For example, Danio rerio
(zebrafish) has been established as an important model orga-
nism to study vertebrate biology (137, 138), especially in
immunology (139), cancer (140), neurological disorders (141),
and toxicology (142). This research is facilitated by the devel-
opment of excellent genetics techniques in zebrafish such as
the targeted knockdown of genes by morpholino antisense
technology (143). There are several reasons accounting for
the fact that this organism has not been metabolically labeled
yet. Notably, the extensive developmental period and the
absence of a labeled food source limit straightforward meta-
bolic labeling. However, metabolic labeling of fish is not un-
precedented with the incorporation of 15N into rainbow trout
to study protein turnover (144).

The last but certainly not least important species that has
not been metabolically labeled so far is humans. Up to now,
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SILAC approaches to metabolically label human cell lines
have been firmly established (40), but the next logical step
would be to extend this to human tissue. Tissue or organs
grown in the laboratory from stem cells may become a rele-
vant source for such experiments (145). However, the holy
grail of quantitative proteomics is to metabolically incorporate
stable isotopes into intact humans. Heavy nitrogen would be
an excellent candidate because there are delightful products
for everybody including vegetarians. The menu consists of
plants, rice, potatoes, insects, and rodents, but would we find
volunteers?
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