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Mass spectrometry based proteomics generally seeks to identify

and characterize protein molecules with high accuracy and

throughput. Recent speed and quality improvements to the

independent steps of integrated platforms have removed many

limitations to the robust implementation of top down proteomics

(TDP) for proteins below 70 kDa. Improved intact protein

separations coupled to high-performance instruments have

increased the quality and number of protein and proteoform

identifications. To date, TDP applications have shown >1000

protein identifications, expanding to an average of �3–4 more

proteoforms for each protein detected. In the near future,

increased fractionation power, new mass spectrometers and

improvements in proteoform scoring will combine to accelerate

the application and impact of TDP to this century’s biomedical

problems.
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Introduction
Proteomics: from inception to enduring goals

The analysis of proteins has undergone a major revolution

over the past 20 years from the earliest days of amino acid

analysis and Edman sequencing to today’s sophisticated

mass spectrometry platforms. The successes of the human

genome project have inspired similar efforts within the

context of the proteome and have thus led the rapid de-

velopment of high-throughput methods for proteomics

[1,2]. Characterizing the chemical state of these proteins

provides valuable biological information. The complexity

of proteomics, a ‘global cellular view’, arises when all

combinatorial patterns are taken into account across a

variety of cell types. To date, bottom-up proteomics has
www.sciencedirect.com 
proven ineffective to detect combinatorial proteomics,

unless the modifications are co-located on one peptide.

In many regards, the human proteome is more complex

than its genome. Each somatic cell in the human body

encodes the same genetic information in �3 � 109 base-

pairs of DNA. However, the human proteome cannot be

defined this trivially. The proteoform content of a cell

changes with cell type, over time and in response to

external stressors. While the human genome contains just

over 20 000 protein-expressing genes, RNA processing

alone increases the number of possible base sequences to

perhaps >100 000 in most cells. Finally, proteins may also

be highly modified with differential combinatorial pat-

terns of post-translational modifications (PTMs) [3,4].

Extensive studies of singly, highly modified proteins

(e.g. histones) show that though these multitudes of

modification combinations are possible, only a limited

number modified forms are observed [5–7].

A word on language and protein databases

During the development of mass spectrometry-based pro-

teomics, many new terms have entered the scientific ver-

nacular. One sequence translated from a gene in the

Universal Protein Resource, or UniProt, is selected as the

‘canonical sequence’, and variations to the base amino acid

sequence are referred to as isoforms. However, this term

fails to capture the complexity of highly post-translationally

modified proteins that may also have base sequence

changes. As different isoforms may be modified differently

from each other, it is important to have language to differ-

entiate the level at which one is speaking, analogous to the

levels of protein higher order structure. The term ‘proteo-

form’ encapsulates the combinatorial combination of a set of

modifications on a particular UniProt isoform (stably ident-

ified with a hyphen and then an integer, e.g. -1 for the
canonical, -2, -3 and so on) [8��]. The proteoform term

includes all site specific features such as coding single

nucleotide polymorphisms, mutations, or PTMs that map

to the same gene. One isoform may have many different

possible proteoforms. Note also that the UniProt Knowl-

edgeBase is a gene-centric database, and, if used precisely

with database search engines, can provide better clarity on

the lingering issue of protein inference for bottom up; top

down technology achieves gene-specific identification for

proteins and thus has no such inference problem.

Mass spectrometry methods for proteomics: top down

and bottom up

From the earliest days of proteomics (even before it was

termed as such) two main types of mass spectrometric
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analysis were performed. The primary method for protein

identification is bottom-up, where peptides, generated

from enzymatic proteolysis of proteins, are analyzed in a

mass spectrometer [9,10]. To increase dynamic range,

many groups have employed polyacrylamide gel electro-

phoresis (SDS-PAGE), either in one dimension, separ-

ating by molecular weight, or in two dimensions with a

primary isoelectric focusing component. As excising

proteins from a gel is labor intensive, many groups have

preferentially turned to on-column separation techniques

such as Multidimensional Protein Identification Tech-

nology (MudPIT) or other separation strategies [11,12].

Digestion of proteins requires the researcher to infer the

identity of a protein from smaller peptides in a robust,

relatively easy, and rapid fashion. Further analytical tech-

niques have been based around this method to give

quantification and identify modified proteins by class

[13]. However, a major limitation of these enrichment

protocols is their potential to alter observed stoichi-

ometry. Rarely do the peptides detected provide infor-

mation covering the entire protein because certain

peptides may not be detected (particularly true for low

abundance proteins). Finally, as with many scientific

methods generating ‘big data’, researchers continue to

optimize the most correct statistical methods of reporting

identifications and false discovery rates [14–16].

To complement the speed and sensitivity of bottom-up

proteomics, top-down proteomics introduces intact proteins

into the mass spectrometer and then fragments whole

protein ions directly [17�]. When the complete intact protein

is present and measured at high mass accuracy, 100%

sequence coverage is obtained and PTM combinations

are preserved, leading to precise identification and charac-

terization of specific genes, isoforms and proteoforms. How-

ever, due to inherent difficulties in both the separation and

detection of intact proteins, there is low proteome coverage

per injection compared with peptide-based analyses [18].

Also, the cost of mass spectrometers required to obtain high

mass accuracy measurements is prohibitive to many groups.

Moving forward, benchtop style instruments will bring this

capability to more research groups than in past years [19–21].

With this and further development on high-throughput

methods for intact proteins, the barriers to implementation

of the top-down approach will drop substantially over the

coming years [22,23��]. The full platform recently devel-

oped by the Kelleher lab combines all the elements dis-

cussed in the following sections to obtain high proteome

coverage (Figure 1). For this reason, it will serve as the focus

of this perspective, along with selected other methods

discussed in the sections below.

A platform for top down proteomics on a high
throughput basis
Mass-based fractionation of intact proteins

Once protein samples have been obtained from many

different available methods, the next downstream step
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can be a mass-based separation. This approach allows the

researcher to sequester proteins into similar ranges of

molecular weight and apply a few adjustments to down-

stream analytical methods for low (>30 kDa), medium

(30–70 kDa), and high (>70 kDa) mass proteins [24].

Many previous researchers had attempted to use mass-

based separation for intact proteins, with limited success

[3,25]. A special gel band elution device can be used, but

few papers exist due to its low recovery of intact proteins

[4].

Tube gel electrophoresis overview and theory

Tube gel electrophoresis operates upon the same separ-

ation principles of SDS-PAGE gel electrophoresis; how-

ever, in the Gel Elution Liquid-based Fractionation

Entrapment Electrophoresis (GELFrEE) device and ot-

her similar devices, proteins elute through the gel and

into solution (Figure 2). Tube gel separation, therefore,

gives higher sample recovery and is amenable to other

separations either before or afterwards. Depending on the

cross-sectional area of the separation tube, much greater

sample amounts can be separated than in a single lane of a

SDS-PAGE slab gel. Similar to gel electrophoresis, the

separation can be optimized for an expected mass range

by changing the degree of gel crosslinking. Each time-

based fraction harvested correlates to a specific expected

mass range which one may optimize with standard

proteins and lysates for reproducible results [26–29].

Some highly hydrophobic proteins can be maintained

in solution with surfactants present (even integral mem-

brane proteins with up to �8 transmembrane domains).

GELFrEE allows the researcher to obtain protein frac-

tions in a time-based manner, although the sample har-

vesting is currently manual [28�,30]. Since the publication

of the initial paper in Analytical Chemistry, this technol-

ogy has been commercialized as the GELFREE 8100

Fractionation System. Each particular sample may pre-

sent unique challenges; yet the GELFrEE device allows

many parameters to be optimized such as stacking gel

length, loading amount, and collection time. Many differ-

ent types of protein sample have been coupled to this

separation platform due to the ease of use and its sim-

ilarity to SDS-PAGE [26,31,32].

Reversed-phase liquid chromatography (RPLC) and

online separations

Liquid chromatography (LC) is among the most popular

method of separation for peptides and intact proteins.

Reverse phase liquid chromatography, RPLC, in particu-

lar is among the most common separation before mass

spectrometry. This technique separates proteins based on

hydrophobicity, with the most hydrophilic molecules

eluting first. In large part due to the popularity of this

technique, a wide range of materials are available and

numbers are continuing to grow. In addition, even though

challenges still exist for nanocapillary-based RPLC of

whole proteins, many research groups are using this for
www.sciencedirect.com



Developing top down proteomics Ahlf, Thomas and Kelleher 789
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A schematic depiction of one work and data flow used for high-throughput top-down proteomics. Total protein content is quantified after cell

purification or subcellular fractionation and loaded onto a GELFREE column (see Figure 2) for molecular weight-based separation. Protein fractions of

increasing molecular weight are processed to remove SDS before injection onto reversed phase columns for online MS or MS/MS analysis. LC–MS/

MS files are processed with ProSight and accompanying software for high-throughput protein identification and characterization.
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Gel Eluted Liquid Fractionation Entrapment Electrophoresis (GELFrEE). The device consists of a resolving gel which can be cast analogous to an SDS-

PAGE gel depending on the separation desired. Fractions are manually removed from the collection chamber in a time-based manner. A portion of

each fraction can be removed and optionally visualized on a traditional SDS-PAGE gel (at right) to assess separation performance. This mass-based

separation allows instrument parameters to be selected for acquisition of optimal top down MS and MS/MS data sets.

www.sciencedirect.com Current Opinion in Chemical Biology 2013, 17:787–794
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advantageous separations in sample-limited situations.

Materials used include C4, C5, and C8 for smaller

proteins, while polymeric media such as PLRP-S have

been utilized to a much wider range [26,31,33,34�,35].

Fenselau and colleagues in particular have used C8 media

for separating bacterial proteins up to 20 kDa [36]. Using

PLRP-S as a portion of the platform Tran et al. identified

1043 proteins from the proteome of a human cell line

[23��]. Patrie et al. have been using a superficially porous

medium with success for HeLa cells and other endeavors

[37�]. Other chromatographic media continues to be

developed for top down proteomics (TDP) and will allow

improvements to RPLC, particularly >70 kDa where

chromatographic resolution tends to suffer for complex

mixtures.

Alternate online separations

An option used by many researchers for additional sep-

aration power, as the separation is orthologous to RPLC,

is isoelectric focusing (IEF). This separation occurs based

on isoelectric point, along a pH gradient generated by

small molecules called carrier ampholytes. Wherever the

protein is placed along a pH gradient, as an electric field is

applied, the protein will move toward the oppositely

charged electrode until it has reaches an uncharged state.

Proteins focus into sharp bands based on their individual

isoelectric points. Several commercial IEF devices exist,

but few examples of true high-throughput TDPs have

been shown on these systems [38–42]. A custom IEF

system has also been coupled to GELFrEE analysis, and

though the system requires many manual steps, the high

recovery and lack of conductive mixing are major assets

[23��,38,43].

Capillary electrophoresis separates proteins according to

their size to charge ratio, and can achieve vary narrow

protein elution profiles (�10 s) [44,45]. Several groups

have coupled this technique to hybrid mass analyzers for

intact protein analysis [46–48]. In addition, many differ-

ent groups are working on adapting separation techniques

such as strong cation exchange or others that have proven

effective at the peptide level to the intact protein level.

For the time being, RPLC remains the default separation

for intact proteins, coupled to mass spectrometry.

Mass analyzers for top down proteomics

To quickly and robustly characterize complex samples for

TDP, even ones with multiple dimensions of separation,

hybrid Fourier transform (FT) mass spectrometers have

become the most common instruments. For TDPs, these

instruments use a separate mass filter before high mass

accuracy measurement in either an ICR cell or an Orbi-

trap. High mass accuracy is particularly vital for

characterization of the human proteome, as it provides

confidence to mass shifts that may be of biological

or artifactual origin [35,49,50]. In addition, high

mass accuracy allowed confident identification and
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classification of multiple bacterial species [36,51]. Even

similar mass shifts, such as acetylation (42.0106 Da), may

be differentiated from trimethylation (42.0470 Da) with

high mass accuracy instruments (Figure 3).

Before intact protein mass spectrometry was readily

accessible, researchers required customized instrumenta-

tion to challenge the limitations of protein analysis. These

instruments have one or more mass filters before the ICR

cell, making them hybrid instruments, and were mostly

tailored for direct infusion of purified proteins or protein

fractions. These instruments have been used with great

effect for the analysis of purified single proteins. Han et al.
showed fragmentation of a 200 kDa protein using a

6 Tesla FT-ICR instrument, and Valeja et al. achieved

baseline resolution for a 148 kDa protein [52,53�]. Several

commercial hybrid instruments make use of quadrupoles

or ion traps before a FT-ICR or a FT-Orbitrap. The ion

trap–Orbitrap pair, a hybrid arrangement from Thermo-

Fisher, allows both mass filtering and fragmentation

within the ion trap. The hybrid has been used for both

bottom-up and top-down proteomic analyses to great

effect as the scans may be performed in the ion trap

for quicker scan speeds, or the FT for high resolution.

These sophisticated instruments have become a bridge

between the work of highly customized instrumentation

labs and those labs newer to the field of TDP. On the

basis of the Kingdon trap, this instrument has proven

useful for intact protein analysis. Improved versions of the

Orbitrap, such as the Orbitrap Elite, show strong capa-

bilities for detection and fragmentation of proteins (even

antibodies up to 160 kDa) [54]. Many researchers are

employing the Orbitrap for both top down and bottom-

up experiments, as all fragmentation modes can be

achieved on an LC time scale. These include electron

transfer dissociation, collision induced dissociation and

Higher-energy C-trap dissociation (HCD) fragmentation.

Expanding the capabilities of mass spectrometers to

analyze larger intact proteins can lead to a very high level

of characterization.

Data processing and informatics

The first software designed for top down mass spectrom-

etry data was ProSightPTM, but since its initial commer-

cialization as ProSightPC, other software has been

developed. MascotTD (a.k.a. Big Mascot) supports

analysis up to 110 kDa, while the standard Mascot sup-

ports up to 16 kDa. Similar to ProSight, MascotTD allows

the identification of different proteoforms and isoforms,

but does not address the database tailoring that best

captures the value of data obtained during top down

fragmentation. MSAlign+ is based on spectral alignment

and allows the identification of unexpected PTMs with

dynamic programming [55,56]. The Precursor Ion Inde-

pendent Top-Down Algorithm, uses the fragmentation

data to match a protein from a predicted gene [57]. With a
www.sciencedirect.com
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Figure 3
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An overview of some mass analyzers used for top down proteomics analysis. From custom instruments (top left) that were used to pioneer the

technique to hybrid FT-ICR systems (top right), FTMS continues to be the workhorse mass spectrometers for top down proteomics. Recently however,

several research groups have shown the capability of the Orbitrap line as a promising option for many labs (bottom).
gene match made, the intact mass is used to map observed

shifts from the gene-predicted mass.

TDP data processing typically uses data with high mass

accuracy at both the intact and fragmentation scan

level, so the software must take this into account during

both analysis and scoring. The lengthy sequences of

whole proteins, compared with 5–20 amino acid long

peptides, can cause database sizes to grow exponen-

tially and a larger number of fragments must be

assessed for matches. With one of the enduring goals

of TDP being characterization of PTMs, large combi-

nations of PTMs can be annotated and considered

within databases. Therefore, all of the considerations

of true proteome level data (isoform and proteoform-

resolved) can be considered. Much improved from its

early days of single protein searching, tools such as

ProSight have become a suite of software tools for

processing this type of data and enabling the automated

correlation of complex tandem MS data sets with

multiply-modified proteoforms.
www.sciencedirect.com 
Conclusions
Each of the sections above outlines an area where research-

ers are advancing TDP. Concerted efforts have improved

the ease of use, throughput, identification, and character-

ization power of TDP. Each stage is important to the

overall platform and will no doubt be the subject of more

work over the coming years. However, as more researchers

turn to proteomics for precise answers and find relatively

low value peptide lists (particularly in discovery/validation

of protein biomarkers), top-down proteomics is poised to

grow as a major, complementary method for the future.

The protocols and work outlined above seek to expand

proteomics based on whole proteins and enable efficient,

accessible analyses based on highly confident and gene-

specific data. This foundation will help expand top-down

proteomics to complement information from other studies

in translational and basic research.

Future prospects
TDP can now characterize hundreds of proteoforms

per day, but use of the technique is underused and
Current Opinion in Chemical Biology 2013, 17:787–794
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Figure 4
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A conceptual comparison of how proteomics measurements (in $/proteoform) might be reduced in the future from the same type of public/private

sector construct used in the Human Genome Project. Cost per measurement can fall with investment and focused effort. Figures are approximate and

projections are not based on advanced modeling (adapted from [8��]).
underdeveloped when compared with the multitude of

laboratories and authors who contributed to the devel-

opment of other methods [58,59]. Several areas of TDP

are poised to alter dramatically in the following few years.

Returning to targeted analysis of complex proteins via

native or ‘supercharged’ ESI (e.g. for antibodies and high

molecular weight therapeutic proteins), represents a great

challenge that many researchers are motivated to solve

[60–62]. Other research areas such as protein biopharma-

ceuticals, allergens, or toxins could benefit from full

characterization. This could remove ambiguity, and

replace concepts such as ‘biosimilarity,’ or methods

resulting in large numbers of consumer or industry com-

plaints [63–66]. Additional potential exists in combining

top-down and middle-down (e.g. heavy and light chain

fragments) approaches to obtain a great depth of identi-

fication and characterization of therapeutic antibodies.

To meet these needs, TDP methods will still need

advancements. Coupling approaches such as subcellular

fractionation methods are straightforward, with non-

incremental advances such as electrospray supercharging

offering disruptive possibilities for the future. Being able

to meet the demands for intact measurement of samples

limited by clinical availability will assist TDP in reaching

more interested groups. Also, strong connections must be

made between proteoforms detected and the mechanisms

underlying complex molecular mechanisms and even

human disease. In recent articles about the role of

TDP in the Human Proteome Project, the potential to

tie whole protein mass spectrometry to cataloguing

human proteoforms in tissues, cell types, and fluids is

rising [2,8��]. One paper calls for tying a disruptive
Current Opinion in Chemical Biology 2013, 17:787–794 
reduction in the cost of proteomics to achieve a $1/

proteoform price point (Figure 4), a >1000 fold increase

in the efficiency of current analyses [8��].
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