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Topoisomerase II is an enzyme essential for DNA replication, chromosome condensation

and chromosome segregation. Inhibitors of topoisomerase II are important drugs used
hemotherapy

toposide

nthracyclines

harmacology

in the therapy of many neoplasms including breast cancer, lung cancer, testicular can-

cer, lymphomas and sarcomas. This paper reviews the mechanism of action, toxicities,

pharmacology and clinical use of topoisomerase II inhibitors including etoposide, tenipo-

side, doxorubicin, daunorubicin, epirubicin, idarubicin and mitoxantrone. New information

ts and
hemotherapy regarding these agen

. Introduction

NA topoisomerases are nuclear enzymes that make tran-
ient strand breaks in DNA to allow a cell to manipulate its
opology [1,2]. Topoisomerase I makes single-strand breaks.
opoisomerase II makes double-strand breaks and passes
ouble-stranded DNA through the nick to allow relaxation
f over-coiled DNA [3]. Topoisomerases are highly conserved
nzymes essential for the survival of all eukaryotic organisms.
here is little sequence homology between topoisomerase I
nd II (Table 1). Topoisomerases function in DNA replication,
hromosome condensation, and chromosome segregation.
everal currently approved chemotherapeutic drugs interfere
ith the action of topoisomerases. Currently available topoi-

omerase I inhibitors are irinotecan (CPT-11) and topotecan.
DA-approved topoisomerase II inhibitors are etoposide, teni-
oside, doxorubicin, idarubicin, epirubicin, and mitoxantrone.
his chapter will review critical concepts and update new

nformation regarding topoisomerase II inhibitors.

. Epipodophyllotoxins

.1. Etoposide
.1.1. Mechanism of action
opoisomerase II is a multi-subunit enzyme which uses ATP to
ass an intact helix through a transient double-stranded break
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on topoisomerase II inhibitors under development is highlighted.
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in DNA to modulate DNA topology [4]. After strand passage,
the DNA backbone is religated and DNA structure restored.
Etoposide prevents topoisomerase II from religating cleaved
DNA [5]. Etoposide thus converts topoisomerase II into a poi-
son that introduces high levels of transient protein-associated
breaks in the genome of treated cells.

Topoisomerase II exists as two highly homologous iso-
forms, alpha and beta, which differ in their production during
the cell cycle. The alpha isoform concentration increases 2–3-
fold during G2/M, and orders of magnitude is higher in rapidly
proliferating cells than in quiescent cell populations. The
alpha isoform appears to be the target of etoposide [6]. The
beta enzyme does not change significantly during the cell
cycle and could potentially be a target in slow growing can-
cers. Two scissile bonds are formed per every topoisomerase
II-mediated double-stranded DNA break. Results of DNA cleav-
age and ligation assay studies indicate a two-site model for
the action of etoposide against human topoisomerase II alpha.
This model suggests that drug interactions at both scissile
bonds are required in order to increase enzyme-mediated
double-stranded DNA breaks [7].

There does not appear to be a single DNA binding site
for etoposide-topoisomerase II targeted breaks. However,

selected hot spots may be present for DNA binding (see
sections on drug toxicity). The cell-signaling pathways that
lead to apoptosis following topoisomerase-induced DNA
damage are not completely understood. Current research

mailto:Kenneth.Hande@Vanderbilt.Edu
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Table 1 – DNA topoisomerases

Topoisomerase I Topoisomerase II

100 kDa 170 kDa; 180 kDa
Makes single-strand

DNA breaks
Makes double-strand DNA
breaks

ATP independent ATP dependent

Genes located on

chromosome 20q12
Gene located on chromosomes
17q21 and 3p24
Two types, alpha and beta

is attempting to elucidate the mechanisms involved [8].
Caspases are a group of cysteine proteases that orchestrate
apoptosis. Robertson et al. have identified caspase 2 as an
important link between etoposide-induced DNA damage and
the engagement of the mitochondrial apoptotic pathway
[9]. Caspase 2 activates caspase 8 resulting in mitochondrial
damage and subsequent downstream caspase 9 and 3 activa-
tion [10]. Caspase 3 appears critical for apoptosis-associated
chromatin margination, DNA fragmentation, and nuclear
collapse. Cells lacking caspase 3 are resistant to etoposide
[11]. Caspase 10 appears to trigger a feedback amplification
loop that amplifies caspases 9 and 3 [12]. Tumor necrosis
factor-related apoptosis inducing ligand (TRAIL) augments
the expression of caspases induced by etoposide [13,14].

Other cell-cycle control proteins are also important medi-
ators in etoposide-induced apoptosis. P53, c-Myc and BAFF
have been identified as pathways utilized to arrest cell cycle
progression and induce apoptosis in certain cell lines exposed
to etoposide [15]. Etoposide activates two pathways which
lead to G2M arrest, one which depends on the presence of
P53 while the other is P53 independent [16]. The presence
of bcr-abl, which prolongs G2M arrest and allows for DNA
repair mechanisms, decreases the cytotoxicity of etoposide.
Cells with dysfunctional early G2/M checkpoint control (such
as ataxia-telangiectasia mutated deficient fibroblasts) have
increased chromosomal abnormalities following etoposide
exposure [17].

Resistance to etoposide arises through multiple mecha-
nisms. Mutations at ser-1106 in the topoisomerase II molecule
abrogate phosphorylation of the enzyme and reduce sensi-
tivity to etoposide [18]. Rapid repair of DNA breaks caused
by etoposide can also lead to drug resistance. Repair occurs
through the single-strand invasion pathway of homologous
recombination or by non-homologous DNA end-joining [19].
The repair of potentially lethal DNA damage by etoposide
appears to be dependent on functioning FLT3 [20]. Resis-
tance to etoposide is noted in cells that have the multidrug
resistance (MDR) phenotype. By modifying the structure of
etoposide to make it a prodrug, etoposide analogs have been
developed which are active, in vitro, against MDR resistant
tumors [21].

2.1.2. Toxicity
Common toxicities from etoposide include bone marrow
suppression, nausea, vomiting, and alopecia. At very high

doses, such as those used with bone marrow transplanta-
tion regimens, mucositis becomes the dose-limiting toxicity.
Liver toxicity, fever, and chills may also occur with high-
dose therapy. Palmar-plantar eruptions and irritation of
e u t i c s 3 ( 2 0 0 8 ) 13–26

the anal canal have been associated with etoposide use
[22].

Hypersensitivity reactions, including vasomotor changes
in the pulmonary and gastrointestinal systems, may also
occur following etoposide (or teniposide) use. These reactions
may result from the Tween 80 needed to solubilize etopo-
side. These reactions can usually be ameliorated with steroids,
histamine blockade, and/or using a slower infusion rate [23].
Etoposide phosphate, a water-soluble pro-drug that is rapidly
converted to etoposide by endogenous phosphatases [24], may
reduce the risk of a hypersensitivity reaction since no solubi-
lizer is required. Etoposide phosphate has been safely used in
patients who have had a hypersensitivity reaction to etoposide
[25]. Etoposide phosphate appears to have kinetics similar to
etoposide, even in the transplant setting [26].

The most serious adverse event associated with etopo-
side is the development of acute myelogenous leukemia
[27,28]. On the basis of current clinical evidence, the World
Health Organization has identified etoposide as carcinogenic
to humans [29]. Therapy-related acute myelogenous leukemia
also occurs with other topoisomerase II inhibitors [30,31]. Vari-
ous studies have shown that topoisomerase II inhibitors target
selected binding sites at translocation breakpoints leading
to MLL, AML1-ETO, PML-RARA and NUP98 rearrangements
[32,33]. Etoposide-related leukemia develops relatively early
after therapy (2–3 years). Most often (70% of cases), etoposide-
related leukemia is distinguished by a balanced translocation
involving the mixed-lineage leukemia (MLL) gene on chromo-
some 11. In vitro exposure of mouse embryonic stem cells to
etoposide results in MLL fusions [34]. The MLL gene is more
sensitive to topoisomerase II induced cleavage than other
genes such as RUNX1 and MLLT3 [35,36]. Lovett et al. has found
that not only etoposide, but also its metabolites (etoposide
quinone and etoposide catechol) enhance DNA topoisomerase
II cleavage near the MLL translocation breakpoints [37]. MLL
rearrangements occur through cleavage events in MLL and the
translocated gene in which both breaks become stable, DNA
ends are processed and then undergo ligation [38]. The double-
stranded DNA breaks in the MLL gene may not be directly
linked to topoisomerase II exposure. Hars et al. [39] suggest
that the DNA breaks generated in the MLL locus are the result
of caspase activation of DNase by etoposide. MLL breakpoints
can occur in stem cells found in cord blood and in fetal hepatic
hematopoietic stem cells, potentially explaining the develop-
ment of infant leukemia resulting from in utero exposure to
topoisomerase II inhibitors [40].

The incidence of secondary leukemia from etoposide use
and the factors increasing the risk of leukemia have varied
from study to study. With rare exceptions, the risk for devel-
opment of acute myeloid leukemia (AML) does not exceed 5%
in patients treated for solid tumors, even with high cumula-
tive doses of topoisomerase II inhibitors. The National Cancer
Institute Cancer Therapy Evaluation Program, using data from
12 studies, calculated a 6-year rate of secondary leukemia of
0.7–3.2% after epipodophyllotoxin therapy [41]. The available
data on testicular cancer suggest that the risk of secondary

leukemia is dose-related with etoposide doses totaling more
than 2 g/m2 resulting in a 2–3% cumulative risk [42]. In a
multicenter study of 61 secondary leukemia cases [43], the
risk of secondary AML was associated with increasing expo-
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ure to etoposide (RR = 7 for patients receiving a total dose of
.2–6.0 g/m2 etoposide or teniposide). Doses over 6 g/m2 were
ssociated with a 93-fold (range 9.9–87%) increased risk of
eukemia development. Risks were highest in patients treated
or Hodgkin’s disease or osteosarcoma. Patients treated for
on-Hodgkin’s lymphoma and acute lymphocytic leukemia
ave been reported to have a higher (>5%) rate of AML induc-
ion [43,44]. The reasons for the difference in incidence are not
lear, but are likely due to variations in treatment schedules
nd use of concurrent chemotherapy agents.

Host factors have been implicated in placing patients at
igher risk for developing topoisomerase II inhibitor-related
ML. Three predisposing factors recently identified include
paucity of CYP3A4 variant genotypes [45], an increased

requency of GSTM1 and GSTT1 null genotypes [46], and a
ower activity of thiopurine methyltransferase activity [47].
hronic thiopurine therapy is associated with an increased
isk of etoposide-associated secondary neoplasms. Thiop-
rine treatment results in thioguanine substitution into DNA.
rynetskaia et al. [48] have shown that deoxythioguanosine
ubstitution near the topoisomerase II cleavage site alters
leavage by topoisomerase II in the presence of etoposide. This
nding may provide an explanation behind the interaction
etween thiopurine- and topoisomerase II-inhibitors. Remis-
ions rates from therapy-related AML can be high; however,
emissions from therapy-related AML are usually brief and the
rognosis is poor [49].

.1.3. Pharmacology
toposide is poorly soluble in water. For intravenous use,
toposide is dissolved in a solubilizer composed of polysorbate
0, polyethylene glycol, and alcohol and diluted to a con-
entration less than 0.4 mg/ml to avoid precipitation. These
dditives are believed to induce the hypersensitivity reactions
ccasionally seen with etoposide infusion.

Approximately one-third of intravenously administered
toposide is excreted in the urine. Less than 2% of an admin-
stered etoposide dose is excreted into bile as intact drug
50]. Etoposide clearance is modestly decreased in patients

ith renal dysfunction [51], but not in patients with hepatic
bstruction [52]. Hepatic glucuronidation accounts for 25%
f etoposide’s clearance. Etoposide is converted primarily by
GT1A1 to the phenolic glucuronide metabolite [53]. Etopo-
ide is also metabolized to a reactive catechol metabolite by
ytochrome P450 3A4. The catechol AUC is only 1–2% that of
toposide [54]. However, the catechol metabolite, like etopo-
ide, is cytotoxic. Mild to moderate liver dysfunction does not
equire a dose reduction and does not increase etoposide tox-
city, even with hyperbilirubinemia [52]. Etoposide is highly
ound to plasma proteins with only 6–8% being non-bound.
ince free drug is biologically active, conditions that decrease
rotein binding or decrease albumin may increase the phar-
acological effect of a given drug dose.
Only a few drug interactions have been identified that

nvolve etoposide. Neither doxorubicin nor ifosfamide change
toposide clearance [55]. No significant interaction is seen

etween the platinum agents (cisplatin and carboplatin) and
toposide [56]. Grapefruit juice, an inhibitor of cytochrome
450 metabolism, does not alter etoposide kinetics [57].
owever, concomitant use of prednisone induces etoposide
t i c s 3 ( 2 0 0 8 ) 13–26 15

clearance, possibly through induction of P-glycoprotein (PgP)
[58]. Patients receiving glucocorticoids may be relatively under
dosed as induction of PgP may increase renal or biliary clear-
ance. Inhibitors of PgP delay etoposide clearance, increasing
toxicity [59]. Daily use of etoposide induces metabolism to
the catechol metabolite. Zheng et al. [54] found significantly
higher etoposide catechol AUCs on day 5 of a 5-day course of
etoposide compared with day 1 of treatment.

Etoposide’s antineoplastic activity is highly dependent on
the schedule of drug administration [60]. Slevin et al. found
that 100 mg/m2 of etoposide given to small-cell lung cancer
(SCLC) patients daily for 5 days had a significantly greater
response rate compared to a 24-h infusion of 500 mg/m2

(89% vs. 10%), despite producing similar AUCs [61]. Etoposide
infusions that provide prolonged low-plasma etoposide lev-
els (>1 �g/ml) can produce antitumor responses in SCLC. The
duration of exposure may impact the plasma concentration of
etoposide required to achieve antitumor response [62].

The efficacy of low-dose, long-term etoposide therapy in
preclinical models generated enthusiasm for oral etoposide,
since this would theoretically be a convenient way of pro-
viding long-duration therapy for patients. Unfortunately, the
bioavailability of oral etoposide ranges from 40 to 80% and
varies with dose [63]. Oral absorption is linear up to doses of
250 mg, but decreases with doses greater than 300 mg. Etopo-
side has been administered via a vaginal ovule as a potential
means of treating cervical lesions. High cervical tissue etopo-
side concentrations were noted with lack of any systemic
absorption [64].

Both intravenous and oral etoposide have significant vari-
ability in plasma drug exposure. Oral etoposide administration
results in greater variability in drug exposure than does
intravenous administration [65]. Changing etoposide doses
in patients with reduced creatinine clearance alters vari-
ability only modestly (±9%). In children, the inter-patient
variability of AUC is decreased when doses are given based
on body surface area rather than weight [66]. Children with
Down’s syndrome may have delayed etoposide clearance
[67].

2.1.4. Clinical use
Etoposide has been used for treatment of a wide variety of
malignancies, including lung cancer, germ-cell malignancies,
leukemias, non-Hodgkin’s lymphoma, Kaposi’s sarcoma, soft
tissue sarcomas, and neuroblastoma [68]. Edick et al. have
correlated the etoposide AUC achieved in leukemia patients
treated with etoposide and their response to therapy [69].
Median etoposide AUCs were higher in patients who achieved
a complete response than in patients who did not achieve a CR
(24 �mol/l vs. 14 �mol/l; p = 0.06). Toxicity was primarily noted
in patients who maintained a plasma etoposide concentra-
tion over 1.7 �M for more than 8 h daily. This suggests that an
adequate plasma drug concentration must be obtained for a
therapeutic response, but that higher, more prolonged plasma
etoposide concentrations produce greater toxicity. Monitoring
plasma etoposide infusions and adjusting doses can result in

attaining, within 10%, a target plasma etoposide concentra-
tion [70].

The addition of etoposide to CHOP chemotherapy for
aggressive lymphomas has recently been found to improve 5-
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year event-free survival compared to CHOP alone [71]. Selected
leukemia types may be more sensitive to etoposide than oth-
ers. In children with pre-B cell leukemia, the presence of
the t(12:21)(p13:q22) resulting in the ETV6/RUNX1 fusion gene
appears particularly sensitive to etoposide [72]. Mechanisms
that explain such sensitivity remain to be defined.

2.2. Teniposide

Teniposide is an analogue of etoposide approved for use in the
United States in 1993, 10 years after etoposide was approved.
Teniposide use has been limited primarily to the treatment
of childhood lymphomas and leukemias and for treatment
of CNS malignancies. However, it may have clinical efficacy
equivalent to etoposide given its similar preclinical activity
and toxicities. Few studies comparing the activity of these two
agents have been performed.

2.2.1. Mechanism of action
Teniposide’s mechanism of action is similar to that of
etoposide. Both drugs damage DNA by interaction with
topoisomerase II to form cleavable complexes that prevent
religation of DNA leading to double-strand DNA breaks. It
has been proposed that the topoisomerase II–DNA covalent
complex arrests transcription and triggers 26S proteasome-
mediated degradation of topoisomerase II beta. Using various
topoisomerase II inhibitors, Xiao et al. [73] found that the
proteosomal degradation of topoisomerase II beta induced by
formation of a topo II–DNA complex is due to transcriptional
arrest, but not DNA damage. Teniposide prefers to form stabi-
lized cleavable complexes at DNA sites bound to the nuclear
matrix [74]. The rate of topoisomerase II–DNA complex forma-
tion with teniposide correlates with DNA damage but not with
cytotoxicity [75].

2.2.2. Toxicity
Teniposide’s toxicities are like those of etoposide: myelosup-
pression, alopecia, mucositis, nausea, and vomiting. Acute
myelogenous leukemia with 11q23 chromosome changes
occur following teniposide therapy [76]. Hypersensitivity reac-
tions appear more frequently with teniposide infusions than
etoposide infusions.

2.2.3. Pharmacology
In vitro, teniposide is about 10-fold more potent than etopo-
side in killing malignant cells. Since both agents have
relatively similar abilities to inhibit topoisomerase II, the
greater in vitro cytotoxicity is likely due to better cellular
uptake [77]. Equitoxic teniposide doses are approximately one-
third less than those of etoposide.

Teniposide has less water solubility, a lower renal clear-
ance (10%), and is more tightly bound to plasma proteins
than etoposide (less than 1% of the total plasma teniposide
is unbound). Certain drugs, such as cyclosporine, increase the
unbound fraction of teniposide resulting in increased toxic-
ity [78]. Teniposide also has a longer drug half-life and greater

biliary clearance than does etoposide. Anticonvulsants, such
as phenobarbital and phenytoin, increase teniposide clear-
ance, presumable by increasing hepatic metabolism [79]. This
increased clearance results in a lower efficacy of teniposide
e u t i c s 3 ( 2 0 0 8 ) 13–26

chemotherapy in children with ALL who are receiving seizure
medications [80,81].

2.2.4. Clinical use
Teniposide has been used as a component of therapy for
pediatric patients with poor prognosis acute lymphocytic
leukemia. Although teniposide is not a major component of
therapy for any adult neoplasms, it has antitumor activity
in small cell lung cancer, Kaposi’s sarcoma, bladder can-
cer, leukemias, and lymphomas [82,83]. A Phase III study
comparing teniposide with or without whole brain radi-
ation therapy for brain metastases from small cell lung
cancer demonstrated a 57% response rate in the combined-
modality arm, which was significantly different from the
22% response in the teniposide-alone arm. However, over-
all survival was not altered [84]. BCNU plus teniposide
increased survival over BCNU alone when given in com-
bination for treatment of primary glioma [85]. Because of
its use in CNS tumors and the frequent concomitant use
of seizure mediations in this population, drug interactions
between teniposide and anti-epileptic medications must be
remembered.

3. Anthracyclines

Anthracycline antibiotics are commonly used antineoplastic
agents with activity against breast cancer, leukemias, lym-
phomas, and sarcomas. Anthracyclines inhibit topoisomerase
II [86]. Anthracyclines also intercalate into DNA and form
reactive metabolites that interact with many intracellular
molecules. Thus, the biologic effects of the anthracyclines may
not be based solely on topoisomerase II activity [87]. Anthra-
cyclines currently approved for use in the United States are
doxorubicin, daunorubicin, epirubicin, and idarubicin.

3.1. Mechanism of action

Anthracyclines react with cellular constituents in various
ways. Their planar aglycone moiety can insert between
adjacent DNA base pairs (intercalation). Anthracyclines cause
single- or double-stranded DNA breaks. They modify the
ability of nuclear helicases to dissociate duplex DNA into
single DNA strands [88]. Anthracyclines can undergo one-
and two-electron reduction, since they are members of the
quinone family, producing reactive compounds that dam-
age macromolecules and lipid membranes [89]. Finally, the
anthracyclines poison topoisomerase II in a manner similar
to etoposide. The ability of anthracycline analogues to poison
topoisomerase II correlates with the cytotoxic potential of the
drug [86].

Anthracyclines trigger apoptotic cell death through com-
plex signaling pathways. Nuclear factor kappa B activation
and I kappa B alpha degradation are early events triggered
by anthracyclines [90]. Cathepsin B is expressed via NF-kappa
B [91]. TRAIL, p53, and the FAS/FAS-ligand system are addi-

tional pathways used for anthracycline apoptosis in various
cell lines [92,93]. The presence of p21 (waf1/cip1/sdi1), a cyclin
dependent kinase inhibitor, suppresses doxorubicin inducing
apoptosis [94]. Doxorubicin decreases sumoylation of KAP1
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transcriptional cofactor KRAB domain-associated protein 1)
hich induces p21 expression [95].

.2. Resistance

nthracycline resistance can result from over expression of
ransport proteins, such as PgP or other multi-drug resistance
ransport proteins. Most clinical trials attempting to overcome
evelopment of anthracycline resistance have used inhibitors
f PgP, such as cyclosporine and cyclosporine analogs. These
linical trials have been largely disappointing as the high con-
entrations of the inhibitors needed to block PgP exacerbate
he toxicity of the chemotherapeutic agent by delaying anthra-
ycline clearance. PSC 833 decreases daunorubicin clearance
-fold and decreases the clearance of daunorubicinol 3-fold
96]. A recent Phase I trial of a third-generation P-glycoprotein
nhibitor (GF120918) found few side effects from the PgP
nhibitor and minimal effect on doxorubicin kinetics at plasma
F120918 concentrations blocking PgP in vitro [97]. Depsipep-

ide, an inhibitor of histone deacetylase, and all trans retinoic
cid (ATRA) both upregulate P-glycoprotein expression and
ay potentially induce resistance to anthracycline treatment

98]. Inducers of nitric oxide synthesis [99] and inhibitors of
he cyclooxygenase-2 enzyme [100] prevent expression of MDR
ssociated proteins and could be used in new strategies to
vercome anthracycline resistance.

.3. Toxicity

he acute, dose-limiting toxicity of anthracyclines is myelo-
uppression. Myelosuppression occurs more frequently with
nfusion than with bolus administration. Other acute tox-
cities include nausea, vomiting, alopecia, and mucositis.
nthracyclines cause severe local tissue reactions if extrava-
ation occurs during infusion. The resulting ulcers can
rogress over weeks, be slow to heal, and occasionally require
kin grafting.

The most serious toxicity associated with anthracyclines is
ardiotoxicity. Three types of cardiotoxicity have been defined
ased on timing of symptoms. Acute cardiotoxicity starts

mmediately after infusion and can include arrhythmias and,
arely, pericarditis. Symptomatic management is appropri-
te. There is little correlation between acute toxicity and
evelopment of chronic toxicity. Late-onset cardiomyopathy
ppears months to years after treatment is completed. In
hildren treated with anthracyclines, subclinical cardiotoxi-
ity may not become overt until patients are adolescent or
dult. The mechanism underlying the cardiotoxic effects of
nthracyclines is generally accepted to be the generation
f free radicals involving iron–doxorubicin complexes that
amage cardiac cellular membranes. Free radicals enhance
ndothelial nitric oxide synthase production which causes
poptosis in myocytes [101]. Iron chelating agents can reduce
nthracycline cardiotoxicity (see below). However, chelation
f iron does not completely protect cells from doxorubicin
ytotoxicity [102]. Doxorubicin free radical metabolites reduce

he protein C receptor on endothelial cells of blood ves-
els down-regulating the protein C anticoagulant pathway
nd perhaps triggering intravascular thrombus formation
103].
t i c s 3 ( 2 0 0 8 ) 13–26 17

The frequency and severity of anthracycline cardiotoxic-
ity in adults has been correlated, in retrospective studies, to
the total dose of anthracycline administered and to the drug
administration schedule with bolus administration appearing
to cause greater risk of heart failure than continuous infusion
[104]. The percentage of adult patients with doxorubicin-
related congestive heart failure (CHF) is 5% at a cumulative
dose of 400 mg/m2, rising to 16% at a dose of 500 mg/m2,
26% at a dose of 550 mg/m2, and 48% at a dose of 700 mg/m2

[105]. In children, a 2.8% incidence of CHF has been reported
6 years following administration of a mean cumulative dose
of 300 mg/m2 of an anthracycline [106]. There is growing
evidence that the frequency of heart failure increases with
longer follow-up in children. Congestive heart failure was
noted in only 1.5% of 265 patients following a median of 34
months after a mean total dose of 300 mg/m2 doxorubicin
[107]. However, a 10% incidence of CHF was found in a group
of 229 patients followed for 15 years after treatment receiv-
ing a similar dose of doxorubicin [108]. In addition to the
development of overt heart failure, measurable cardiac abnor-
malities can be detected in 25–30% of adult patients treated
with a median dose of 300 mg/m2 doxorubicin [109]. Male
sex, older age, higher doses of doxorubicin, radiotherapy and
obesity increase the risk of cardiac toxicity. The concomitant
use of other medications such as trastuzumab and paclitaxel
increase the risk of anthracycline cardiotoxicity. Paclitaxel
and docetaxel, at low concentrations, stimulate formation of
the toxic metabolite doxorubicinol which may be the cause
of increased cardiotoxicity [110]. Troponin plasma concentra-
tions may be a sensitive means of assessing early doxorubicin
cardiotoxicity. Troponin-T plasma concentrations are elevated
in 30% of children treated with doxorubicin, positively corre-
late with dose of doxorubicin given, and occasionally remain
elevated for months [111]. Levels of brain naturetic peptide
(BNP) do not appear to be predictive of the development of
reduced left ventricular ejection fraction [112].

Several strategies to decrease the risk of anthracycline
cardiotoxicity have been evaluated. Continuous infusion
anthracycline therapy has not been shown to offer a
significant cardioprotective advantage over bolus drug admin-
istration [113,114]. Dexrazoxane, an iron-chelating agent, can
decrease the acute risk of cardiac toxicity presumably by
preventing formation of iron-catalyzed free radicals. There
have been 16 published clinical trials, nine of them ran-
domized, using dexrazoxane with anthracyclines that have
demonstrated increased cardio-protection for patients tak-
ing dexrazoxane with no decrease in antineoplastic activity
[115]. Dexrazoxane reduces cardiac injury, as measured by
troponin T, associated with the use of anthracyclines in child-
hood ALL without compromising the anti-leukemic efficacy of
treatment [116].

Chemical modifications of the anthracyclines have been
explored in an attempt to reduce cardiac toxicity. Lipo-
somal formulations of doxorubicin and daunorubicin have
been developed. By encapsulating drug in liposomes, anthra-
cyclines have a longer half-life and may preferentially

accumulate in tumor tissue rather than cardiac tissue, thereby
providing selectivity. Pegylated liposomal doxorubicin causes
less cardiomyopathy than free doxorubicin. The median
anthracycline dose producing cardiotoxicity is higher for lipo-
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somal doxorubicin (785 mg/m2) compared to conventional
doxorubicin (570 mg/m2) (p = 0.0001; hazard ratio, 3.56) [117].
In metastatic breast cancer patients, cardiotoxicity is reduced
from 21 to 6% when liposomal doxorubicin has been compared
to conventional doxorubicin [118]. The median cumulative
dose of liposomal doxorubicin at the onset of cardiotoxic-
ity was 2220 mg/m2 versus 480 mg/m2 for doxorubicin in this
study. Liposomal doxorubicin (Doxil, Caelyx) appears to pro-
vide comparable antineoplastic efficacy against breast cancer
compared to regular doxorubicin [119]. Liposomal doxorubicin
preparations have less nausea, vomiting and alopecia than
standard doxorubicin but have a significantly increased risk of
palmar-plantar erythrodysesthesia (hand–foot syndrome) and
mucositis [120]. Four skin toxicities have been reported with
liposomal doxorubicin: hand–foot syndrome (40% of patients),
diffuse follicular rash (10%), intertrigo-like eruption (8%), and
formation of new melanotic macules (5%) [121]. Pegylated
doxorubicin may have less cardiotoxicity than doxorubicin
allowing greater cumulative drug doses [122].

At equally myelosuppressive doses, epirubicin has been
proposed to be less cardiotoxic than doxorubicin [123]. Com-
pared to doxorubicin, epirubicin has greater sequestration
into vesicles and impaired efficiency of electron addition to
form reactive oxygen species, which may limit cardiotoxi-
city [124]. Ryberg et al. have proposed using a maximum
cumulative dose of 900 mg/m2 of epirubicin (where the inci-
dence of symptomatic cardiotoxicity was found to be 4%)
[125]. However, Meinari et al. have found evidence of abnor-
mal diastolic function in 38% of patients receiving relatively
low (360–450 mg/m2) doses of epirubicin and a drop in LVEF
below 50% in 11% of these patients. These data suggest epiru-
bicin may have greater cardiotoxicity than initially suggested
[126]. A large systematic literature review found inadequate
evidence to indicate that epirubicin was less cardiotoxic than
doxorubicin at equimolar doses [127].

Unfortunately, treatment of anthracycline-induced car-
diotoxicity, once developed, is less then optimal. Use of ACE
inhibitors produces a transient improvement in heart func-
tion but heart failure redevelops after 2–6 years of ACE therapy
[128]. New solutions to the problem of anthracycline car-
diotoxicity continue to be evaluated [129].

Acute myeloid leukemia is a rare but serious compli-
cation of anthracycline-based chemotherapy (see Sections
2.1 and 4). Crump et al. found the probability of secondary
acute leukemia to be 1.7% among 539 breast cancer patients
treated with epirubicin [130]. In a large, retrospective review,
AML/MDS was seen in 0.6% of 9796 breast cancer patients
receiving adjuvant epirubicin [131]. The risk of AML/MDS
increased in relationship to the dose of epirubicin per cycle
and the cumulative dose of epirubicin is given.

3.4. Pharmacology

The anthracyclines have many similar pharmacokinetic prop-
erties. Anthracycline elimination occurs primarily through

hepatic metabolism and biliary excretion. Urinary exertion
of intact drug accounts for less than 10% of anthracycline
clearance. Hepatic dysfunction (or obstruction) results in
higher rates of mucositis and myelosuppression, but not
e u t i c s 3 ( 2 0 0 8 ) 13–26

increased cardiotoxicity [132]. Anthracycline pharmacokinet-
ics are highly variable, with an almost 10-fold inter-patient
variation in the AUC despite standardization of the dose based
on body surface area [132,133]. Normalization for body surface
area reduces variability by less than 2% [133]. Decreased dox-
orubicin distribution and clearance has been noted in elderly
patients in some studies [126] but not others [134]. Greater tox-
icity was reported in patients receiving 60 mg/m2 liposomal
doxorubicin in patients over 70 compared to younger patients
[135]. Doxorubicin metabolites accumulate in ascites and are
cleared more slowly from the peritoneal compartment than
from serum [136]. This delayed metabolite clearance has the
potential to increase toxicity in patients with large third space
fluid collections.

Anthracyclines are metabolized to 13-dihydro (alcohol)
derivatives that are more toxic than the parent compounds.
Doxorubicinol is twice as cardiotoxic as doxorubicin, and
daunorubicinol is six times more cardiotoxic than daunoru-
bicin [137]. Daunorubicin and idarubicin are more rapidly
metabolized to their alcohol metabolite than are doxoru-
bicin or epirubicin. The 13-dihydro anthracycline derivatives
have minimal cytotoxicity except for idarubicinol. Samuel
has suggested that parent drug contributes nearly all of the
cardiotoxicity resulting from doxorubicin administration, but
daunorubicin only causes about 25% of cardiac damage with
daunorubicinol causing the remaining 75% [137].

Two FDA-approved liposomal formulations of doxorubicin,
Doxil and Myocet, and one of daunorubicin, daunoxone,
are currently available. Liposomal encapsulation extends the
duration of drug exposure and alters the pharmacodynamic
properties of anthracyclines [138–140]. The nature and extent
of these alterations depends on the lipids used in the liposome
formulation. Myocet carries doxorubicin in phosphatidyl-
choline and cholesterol while Doxil (Caelyx in Europe and
Canada) utilizes pegylated lipids. Myocet releases half of its
doxorubicin within 1 h and 90% within 24 h. In contrast, Doxil
releases less than 10% of doxorubicin within 24 h (half-life of
45–90 h). The change in drug release alters the toxicity pro-
file. Myocet causes myelosuppression and mucositis while
Doxil therapy produces palmar-plantar erythrodysesthesia
and mucositis. Less than 12% of a dose of pegylated lipo-
somal doxorubicin is excreted in the urine. However, in a
retrospective review, patients with renal insufficiency receiv-
ing pegylated doxorubicin had greater mucocutaneous and
hematologic toxicity than expected [141].

Daunoxone has dose-limiting toxicity of febrile neutrope-
nia [142]. Liposomal daunorubicin has a half-life of 5.3 h
with low concentrations of daunorubicin and daunorubicinol
persisting in plasma for 72 h following daunoxone adminis-
tration [143]. Liposomal daunorubicin has markedly different
pharmacokinetics compared to standard daunorubicin. First,
liposomal encapsulated daunorubicin produces mean plasma
AUC levels 100–200-fold those seen with regular daunorubicin
at comparable doses due to decreased total body clearance.
Second, the volume of distribution at steady state is 200–500-
fold lower than for the non-liposomal drug. The plasma AUC of

daunorubicinol is similar or greater than that of free daunoru-
bicin for comparable doses.

Several important drug interactions affecting anthracy-
cline kinetics and toxicity are important to recognize. When
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aclitaxel is given prior to doxorubicin, the peak doxorubicin
lasma concentrations increase significantly, drug clearance

s reduced, and increased cardiotoxicity is noted as compared
o the opposite sequence [144]. This interaction is caused by
axane inhibition of PgP-mediated anthracycline clearance.
ffects on doxorubicin kinetics are noted up to 24 h after pacli-
axel administration. The use of paclitaxel prior to epirubicin
lso results in increased myelosuppression and increased AUC
f epirubicin and metabolites [145].

Epirubicin is inactivated via formation of epirubicin glu-
uronide. The specific UDP-glucuronosyltransferase (UGT)
esponsible for this inactivation is UGT2B7 [146]. Fortunately,
urrently recognized polymorphisms in UGT2B7 do not affect
he rate of epirubicin glucuronidation. The amount of UGT2B7
resent in hepatic microsomes increases with age which could
esult in increased epirubicin toxicity in very young children
147]. Epirubicin can be safely given to patients with chronic
enal failure on dialysis [148]. Plasma, tumor and subcuta-
eous tissue concentrations of epirubicin have been measured

ollowing intravenous drug delivery. Mean epirubicin exposure
n subcutaneous tissue is similar to that found in tumor tis-
ue. However, Cmax and AUC values in tissues are only 1% and
1%, respectively, of plasma values [149].

.5. Clinical uses

nthracyclines continue to be used to treat a wide variety of
eoplasms including breast cancer, lymphoma, Kaposi’s and
oft tissue sarcomas, ovarian cancer, and leukemia. Higher
oxorubicin plasma concentrations and AUCs have been cor-
elated with an increased frequency of induction of complete
emission in children with acute myeloid leukemia [150].
oxorubicin is the most commonly used anthracycline. No
nthracycline analogues have been found to be superior to
oxorubicin in the treatment of solid tumors [151]. Epiru-
icin is an epimer of doxorubicin. It has similar antineoplastic
ctivity compared with doxorubicin and is used primarily as
herapy for breast cancer.

Daunorubicin has minimal activity in solid tumors, but it
s an important agent for therapy of acute leukemias [152].
darubicin is an analogue of daunorubicin used primarily in
ML therapy. While there has been some suggestion that

darubicin may have a survival advantage compared with
aunorubicin, the actual differences in survival are minimal.

darubicin has significant oral bioavailability [153]. Oral idaru-
icin use has been evaluated in elderly patients with AML [154]
nd showed high toxicity and lack of efficacy in this patient
opulation.

Liposomal encapsulated doxorubicin (Doxil, Caelyx) has
ctivity against breast cancer [155,156], Kaposi’s sarcoma,
ead and neck cancer [157], ovarian cancer [158], and prostate
ancer [159]. Liposomal doxorubicin is not active against
ecurrent SCLC [160], hepatocellular cancer [161], endometrial
ancer [162], pancreatic cancer [163], gastric cancer [164], or
dvanced colorectal carcinoma [165].

An aerosolized formulation of doxorubicin has been devel-

ped in an attempt to find a delivery method with less
ystemic toxicity for treatment of pulmonary metastasis. In
recently reported Phase I trial [166], no systemic drug toxic-

ty was noted up to an inhaled dose of 9.4 mg/m2 doxorubicin.
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However, dose limiting pulmonary toxicity was noted at an
inhaled dose of 9.4 mg/m2.

4. Mitoxantrone

Mitoxantrone is an anthracenedione that targets topoiso-
merase II. It is the only agent of its class approved for clinical
use [167]. Mitoxantrone lacks the ability to form the quinone-
type free radicals thought to account for anthracycline
cardiotoxicity. It has been purported, but not demonstrated,
to have less cardiac toxicity than anthracyclines at equivalent
cytotoxic doses.

4.1. Mechanism of action

Mitoxantrone binds to topoisomerase II resulting in cleavable
complexes that induce DNA strand breaks. Mitoxantrone’s
poisoning of topoisomerase II, with resultant DNA damage,
is a critical signal for NF-kappa B activation and induction of
apoptosis [168]. Induction of apoptosis requires the integrity
of functional DNA-damage response genes [169].

4.2. Drug resistance

Mitoxantrone resistance can develop through several mech-
anisms: altered topoisomerase II activity, decreased intra-
cellular drug accumulation, increased glucuronidation, and
altered nuclear/cytoplasmic distribution of drug [170]. An ABC
half-transporter mitoxantrone efflux pump (also termed BCRP,
MXR or ABCP) is located on chromosome 4q22 [171]. Tran-
scription of this gene results in 2.4-kb mRNA encoding a
655-amino acid polypeptide localized to the plasma mem-
brane [172]. Increased expression of the MXR/BCRP/ABCP is
found in clinical samples from patients with relapsed or
refractory acute myeloid leukemia [173]. Several immuno-
suppressants (cyclosporin, tacrolimus, and sirolimus) inhibit
BCRP and can potentiate the cytotoxicity of mitoxantrone
[174]. Selected flavonoids are also inhibitors of BCRP [175].
Mitoxantrone cellular transport is also mediated by other
transport proteins such as MPR-1 and ABCB1 (MDR1) [176].

4.3. Pharmacology

Mitoxantrone is highly protein bound (78%) with a large vol-
ume of distribution 1000–4000 l/m2 [177]. Hepatic metabolism
is the primary mechanism for clearance [178] with 6–11% of
mitoxantrone being cleared by the kidney. No adjustment
in dosage is necessary for mild to moderate renal dysfunc-
tion. Hepatic dysfunction likely leads to increased AUC due to
decreased drug elimination but firm data are lacking. Inhibi-
tion of PgP by cyclosporine decreases mitoxantrone clearance
by 42% [179].

4.4. Toxicity
The primary dose-limiting toxicity of mitoxantrone is
myelosuppression. Other potential toxicities include nausea,
vomiting, alopecia, and cardiotoxicity. At doses that produce
equivalent nadirs in WBC and platelet counts (75 mg/m2 of
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doxorubicin vs. 15 mg/m2 of mitoxantrone), nausea, vomit-
ing and alopecia are less frequent with mitoxantrone than
with doxorubicin [180]. With commonly used dosages, approx-
imately twice as much mitoxantrone can be given before
heart failure develops when compared with doxorubicin. The
incidence of heart failure in patients receiving a mean dose
of 60 mg/m2 mitoxantrone is less than 0.2% [181]. Although
mitoxantrone is believed to be associated with reduced car-
diotoxicity, because of the methodological limitations of
reported studies, the exact risk factors for and incidence of
mitoxantrone cardiotoxicity remain unclear [182].

Mitoxantrone may be more leukemogenic than anthracy-
clines [183]. The relative risk of AML or myelodysplasia (MDS)
was 15.6 for breast cancer patients treated with mitoxantrone
compared to a matched untreated control. The relative risk
for breast cancer patients treated with anthracyclines was
2.7. Saso et al. [184] have estimated an actuarial risk of
leukemia development at 1.1 and 1.6%, 5 and 10 years fol-
lowing treatment with mitoxantrone (10 times the risk of
general population). The incidence of acute myeloid leukemia
in patients treated with mitoxantrone as a single chemother-
apy agent for multiple sclerosis was estimated to be only 0.07%
in another study [185].

Acute promyelocytic leukemia (APL) is a secondary can-
cer associated with chemotherapy treatment of breast cancer
[186]. Mitoxantrone use has been implicated in half of these
APL cases. Most cases are associated with a 15:17 chromo-
somal translocation [187]. Mitstry et al. demonstrated that
mitoxantrone therapy results in clustering of chromosomal
breakpoints within an 8-bp region of the PML gene [187]. This
mitoxantrone-related PML hotspot corresponds to a preferred
site of topoisomerase II-mediated cleavage. Doxorubicin and
etoposide also induce topoisomerase II to cleave at this APL
hotspot. However, etoposide (as mentioned earlier) is most
often associated with MLL translocations while mitoxantrone
is associated with treatment related APL. This suggests that
different topoisomerase II-directed chemotherapeutic agents
predispose patients to different chromosomal translocations.

4.5. Clinical uses

Mitoxantrone is used primarily in therapy for breast can-
cer, leukemia, lymphoma and prostate cancer. Because of
the anticipated reduced toxicity with mitoxantrone as com-
pared to doxorubicin, mitoxantrone has been incorporated
into selected chemotherapy regimens for patients with a poor
performance status who are believed to be at significant
risk for doxorubicin toxicity. In most selected head to head
comparisons, response rates, and survival seem to be simi-
lar when mitoxantrone is substituted for doxorubicin [188].
Mitoxantrone has been evaluated in several unique clinical
scenarios. Mitoxantrone has demonstrated activity in elderly
and poor prognosis AML patients. However, mitoxantrone
offers no advantage over other anthracyclines [189]. High dose
mitoxantrone is no more effective than standard drug doses

in treatment of breast cancer [190]. Mitoxantrone and pred-
nisone for hormone-refractory prostate cancer delays disease
progression and improves quality of life without altering sur-
vival. Mitoxantrone has been used for therapy of multiple
sclerosis [191].
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5. Novel topoisomerase II inhibitors

Novel topoisomerase II inhibitors are being investigated for
their potential as clinically useful antineoplastic agents.
The bisdioxopiperazines (ICRF-193, ICRF-187 [dexrazoxane],
merbarone, and aclarubicin) are compounds that block the
catalytic activity of DNA topoisomerase II but do not stabilize
the DNA–topoisomerase II cleavable complex. ICRF-193 results
in an accumulation of closed clamp conformations of topoi-
somerase II on DNA interfering with DNA transcription [192].

Drugs that potentially inhibit both topoisomerase I
and topoisomerase II enzymes include intoplicin, TAS-103,
XR5000, triterpenoids and F11782 [193]. F11782 inhibits cat-
alytic activity of the topoisomerases without interacting with
DNA, which gives it a novel mechanism of action [194]. TAS-
103 is primarily a topoisomerase II inhibitor but may have
minimal activity against topoisomerase I [195]. A Phase I trial
of TAS-103 found the primary toxicity of this drug to be myelo-
suppression [196].

Several other classes of compounds including makalu-
vamines [197], bioflavonoids (flavones, favonols, and
isoflavones) [198], nitrofurans (thanatop) [199], quinoxa-
line (XK469) [200], and radicol (also an inhibitor of heat shock
protein) [201] have been identified as inhibitors of topoiso-
merase II. The clinical activity of these compounds has yet to
be determined.

Several analogs of the anthracyclines are in various stages
of clinical development. PNU-159548, an alkycycline daunoru-
bicin derivative, has demonstrated antineoplastic activity
in animal models with reduced cardiotoxicity compared to
doxorubicin [202]. Ethonafide is an anthracene-containing
derivative of amonafide which inhibits topoisomerase II and
may have less toxicity than other anthracene-containing
agents [203]. Amirubicin, a synthetic 9-aminoanthracycline,
has been approved for clinical use in Japan for the treatment
of lung cancer [204]. The hydroxyl metabolite of this agent,
amirubicinol, has significant cytotoxicity and accounts for 15%
of parent drug clearance.

Since several topoisomerase II inhibitors have demon-
strated significant antineoplastic activity against a variety of
cancers in man, continued studies looking at new agents that
target this enzyme will undoubtedly be performed. Hopefully,
agents with even greater activity or less toxicity will be iden-
tified from these investigations.
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