
ANAEMIA 1

Emanuel Nečas necas@cesnet.cz

Syllabus of "Anaemia 1"

- 1. What is anaemia?
- 2. The anaemic syndrom.
- 3. Anaemia_sign versus Anaemia_disaease
- 4. Why and how anaemia develops?
- 5. Classifications of anaemias
- 6. Summary of the most important items of the lecture.

Signs versus symptoms

Signs are commonly distinguished from symptoms as follows:

Both are something abnormal

 <u>a symptom</u> is experienced and reported by the patient,

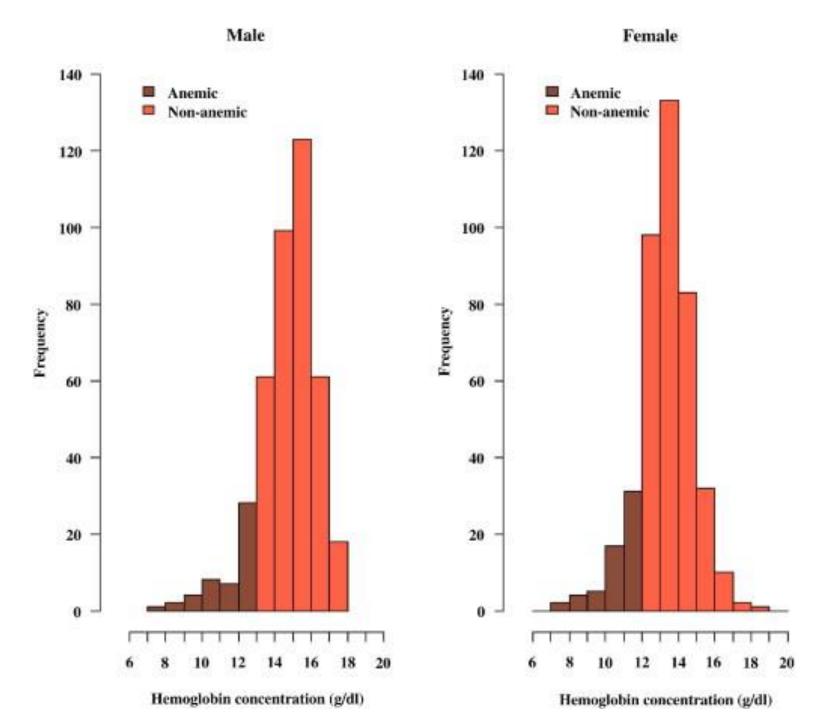
while

 a sign is discovered by the physician during examination of the patient.

1. What is anaemia?

The anaemia is pathological condition characterized by specific signs and symptoms.

Symptoms of anaemia


- fatigue
- shortness of breath
- pale skin and muccosae
- palpitations

The major criteria (signs) for anaemia are results of laboratory examination

 decreased number of red blood cells in the blood

 decreased concentration of hemoglobin in the blood

a low haematocrit

The haemoglobin concentration in blood should be below

• in men < 120 g Hb/L

• in women < 110 g Hb/L

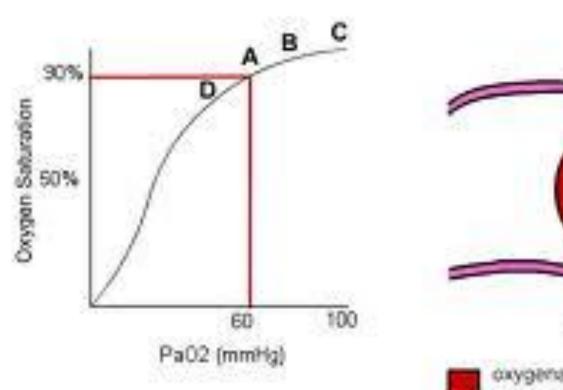
A life threatening anaemia

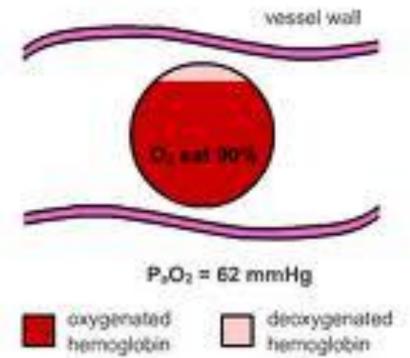
haemoglobin concentration in blood

40 to 30 g Hb/L

(an acute onset anaemia vs. chronic anaemia)

Adaptive, compensatory mechanisms in acute and chronic anaemia.


Adaptive, compensatory mechanisms in acute and chronic anaemia


Acute anaemia:

- increased cardiac output
- increased arterio-venous oxygen content difference

Chronic anaemia:

- increased arterio-venous oxygen content difference
- decreased affinity of blood to oxygen (2,3-DPG)

2. The anaemic syndrome.

A syndrome (generally) includes several symptoms occurring together - this is helpful in the diagnostic process.

The anaemic syndrome includes:

- mucosal ev. skin pallor
- exertional dyspnea (shortness of breath)
 - a rapid heart rate (tachycardia),
 - fatigue,
 - sleepiness

(all the symptoms depend on a degree of anaemia and a rate of its development)

3. Anaemia_sign

versus

Anaemia_disaease

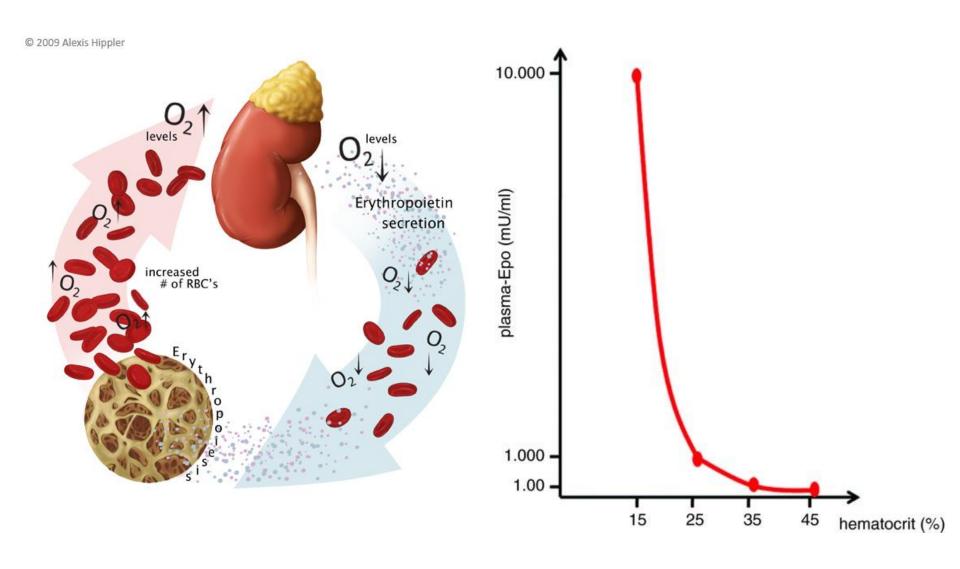
Anaemia means that something is wrong – it is sign of a disease.

It can be a part of various diseases (e.g. a tumour, a chronic immflamatory disease) – "secondary anaemia").

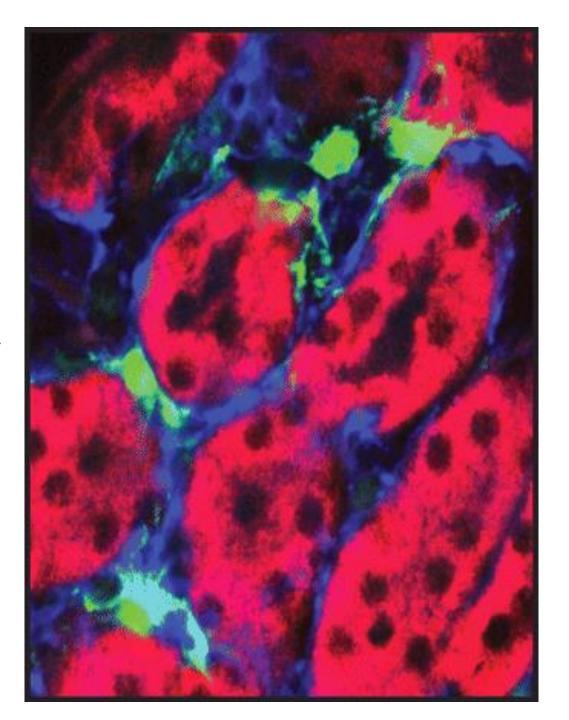
It can be caused by a primary disease of the blood forming tissues or red blood cells.

The symptomatic versus the causal treatment of anaemia

 Symptomatic treatment – transfusion of the red cell mass or the whole blood

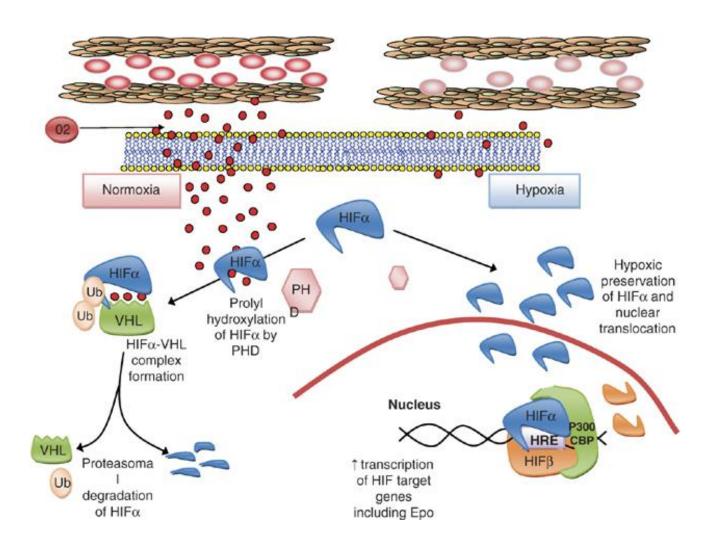

 Causal treatment – after establishing cause of anaemia – e.g. vitamin B12 or iron supplementation, splenectomy, immunosuppressive therapy ...

4. Why and how anaemia develops?


Losses and production of red blood cells are normally well balanced ...

Anaemia results from the losses of red blood cells outweighing their production rate.

Control of the Red Blood Cell Production



Cells producing erythropoietin in the kidney according to oxygen availability

Copyright © 2011, American Society for Microbiology

Oxygen sensing mechanism governing erythropoietin production

COMPUTER SIMULATION

Aneamia may improve, may worsen, may be stable.

 A new equillibrium, a new dynamic steadystate between red blood cell losses and production rates may result in a chronic stable anaemia.

A special case is
 a compensated haemolytic syndrome
 when both: the red blood cell losses and production are increased.

5. Classifications of anaemias

Classification of anaemia

pathogenetic

morphologic (laboratory)

etiologic

Morphological (laboratory) classification of anaemia

Morphological (laboratory) classification of anaemia

 according to red blood and bone marrow cell volume (size)

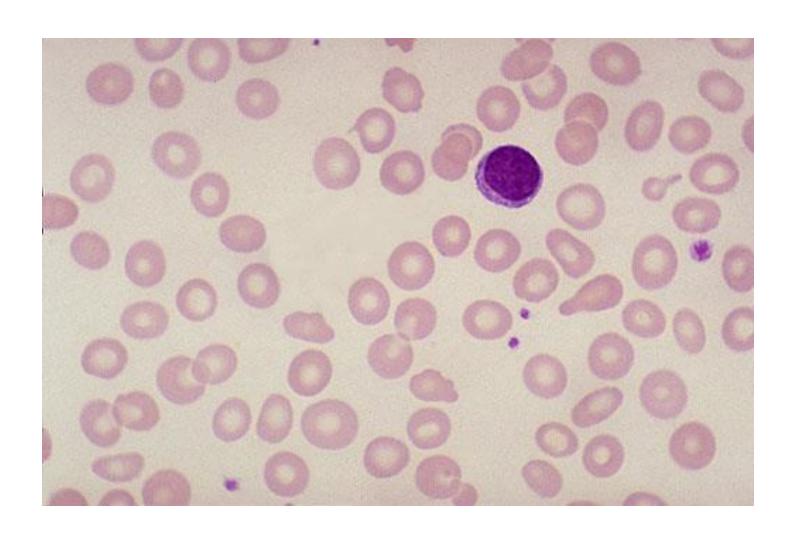
2. according to red blood cell hemoglobinization

3. according to red blood cell shape

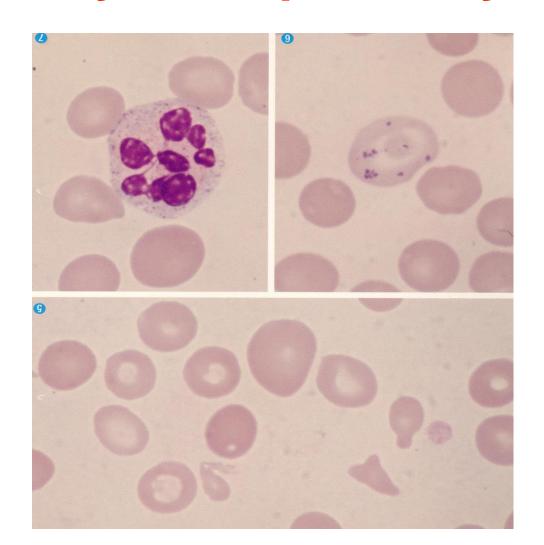
Morphological classification of anaemias - 1

Normocytic anaemia (MCV is 80-95 fL)

- after acute blood loss
- aplastic anaemia
- some haemolytic anaemias

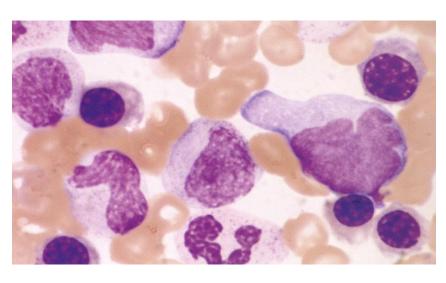

Makrocytic anaemia (MCV higher than 95 fL)

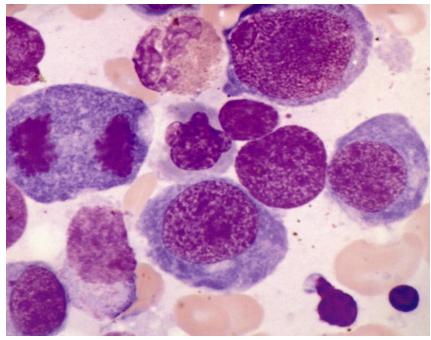
- megaloblastic anaemia (folic acid or vitamin B₁₂ deficit
- anaemia accompanying hypothyreosis, high number of reticulocytes in the blood


Mikrocytic anaemia (MCV less than 80 fL)

- iron deficiency anaemia
- β-thalassaemia major
- hereditary spherocytosis

Mikrocytic (MCV < 80 fL) hypochromic anaemia

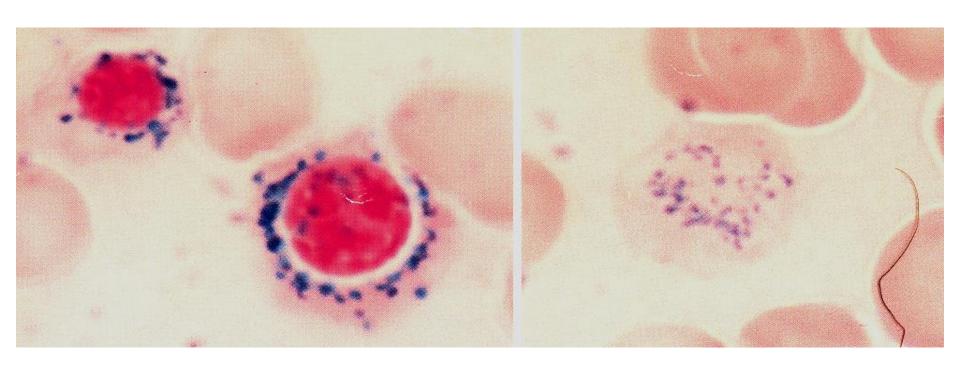



MACROCYTIC ANAEMIA (MCV > 95 fL) anisocytosis, poikilocytosis

Megaloblastic (and macrocytic) anaemia from vitamin B12 or folic acid deficiencies

- bone marrow is not aplastic but there are few reticulocytes in the blood

Morphological classification of anaemias - 2


Normochromic anaemia (MCHC is 300–350 g/L of packed red blood cells)

anaemias of various aetiologies

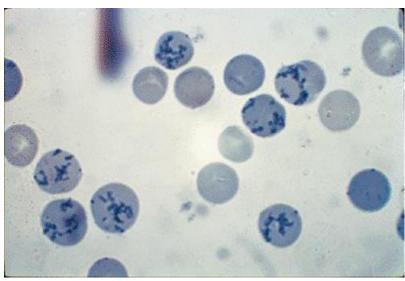
Hypochromic anaemia (MCHC below 300 g/L of packed red blood cells)

- iron deficiency anaemia
- β-thalassaemia major
- pyridoxin (vitamine B6) responsive anaemia
- anaemia due to plumb (Pb) intoxication

Sideroblastic anaemia

Pathogenetic classification of anaemia

1. Anaemias caused by insufficient (low, decreased) red blood cell production.


2. Anaemias caused by increased red blood cell losses (bleeding or hemolysis).

Anaemias from decreased red blood cell production

reticulocytes are very low in the blood

Reticulocytes grossly indicate activity of erythropoiesis

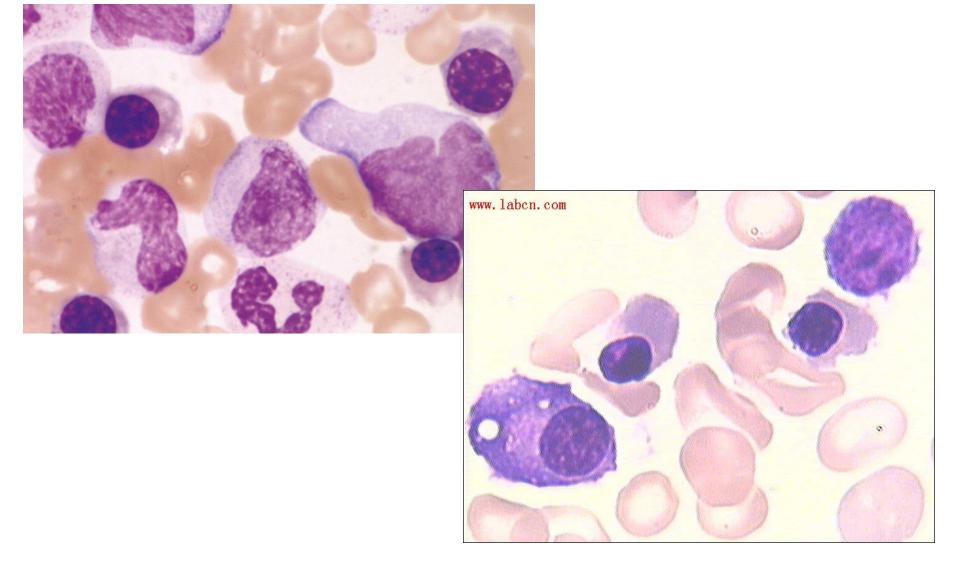
(1)

Anaemia from decreased red blood cell production

Causes of decreased red blood cell production

1. BONE MARROW FAILURE

- aplastic anaemia
- myelodysplastic syndrome (MDS)
- leukaemia
- myelofibrosis
- tumour inflitration of the bone mrrow


2. DEFICIENCY OF ESSENTIAL FACTORS

- iron deficiency
- folic acid or vitamine B12 deficiency
- severe protein malnutrition

3. LOW ERYTHROPOIETIN

- severe damage of both kidneys
- chronic inflammation
- severe protein malnutrition

NORMAL and APLASTIC BONE MARROW

Anaemia as a part of pancytopenia

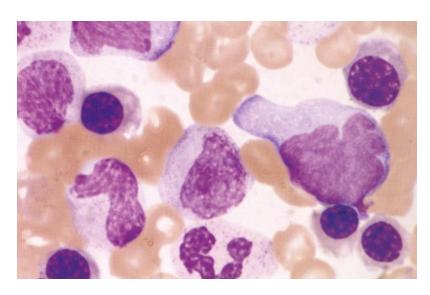
- pancytopenia means low numbers of all blood cells
- "myeloid" (red blood cells, granulocytes, monocytes, platelets)

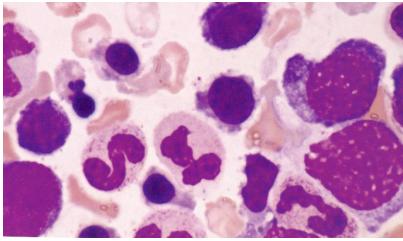
eventually also

• "lymphoid" (different types of lymphocytes)

Anaemia from deficiency of essential factors (Fe, vitamin B12, folic acid ...)

 blood: mikrocytic or makrocytic anaemia, may be hypochromic


 bone marrow: contains enough hematopoietic cells (precursors of blood cells), they look abnormal (large – megaloblasts, changed nucleus-cytoplasmic ratio, little hemoglobin in the cytoplasm ...


Iron deficiency anaemia (a microcytic hypochromic anaemia)

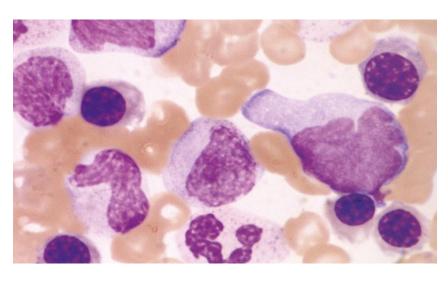
Iron (Fe2+) essential for heme synthesis

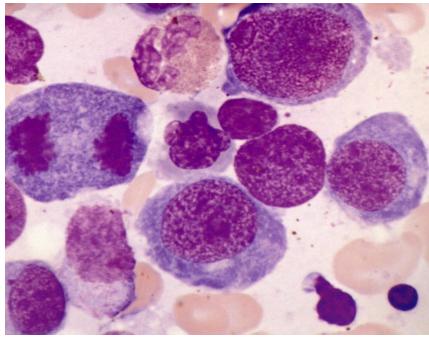
 erythropoiesis needs about 30 mg of iron every day (gain from food is only 1 to 2 mg a day). Iron is intensivelly recycled.

IRON DEFICIENCY - BONE MARROW

Vitamin B₁₂ and folic acid deficiency anaemia

- folic acid and vitamin B12 are needed for synthesis desoxynucleotides
- cells in the bone marrow divide intensivelly and this is hampered by deficiency of the factors
- vitamin B12 deficiency, but not that of folic acid, may have also a neural symptoms manifested by senitivity and motoric disorders


Pernicious anaemia


 there is a deficit in vitamin B12 absorption due to lack of the intrinsic factor produced normally by gastric mucosa

 this used to be a deadly disease (anaemia)

Megaloblastic (and macrocytic) anaemia from vitamin B12 or folic acid deficiencies

- bone marrow is not aplastic but there are few reticulocytes in the blood

(2)

Anaemia from increased red blood cell losses

chronic or acute bleeding (Fe losses!)

haemolysis

(red blood cells "live" less than 120 days) ... reticulocytes counts are often elevated

- intravascular haemolysis
- extravascular haemolysis

Acute and chronic bleeding

- a normocytic anaemia
- bone marrow increases production of red blood cells (reticulocytes)
- 1 mL blood contains 0.6 mg iron (a daily gain of iron from food is 1 to 2 mg)
- chronic bleeding often leads to iron deficiency and this limits capacity of the bone marrow to replace lost red blood cells

Hemolytic anaemias

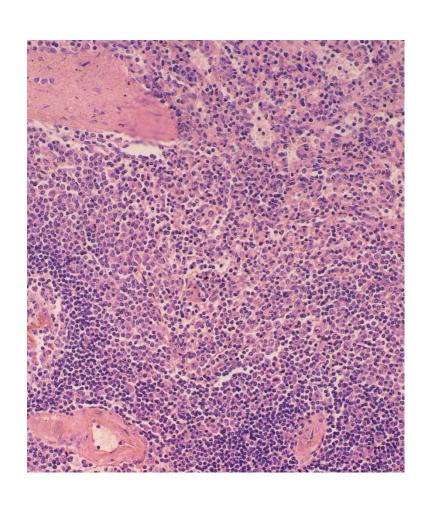
- corpuscular (mostly hereditary)
- extracorpuscular (mostly acquired)

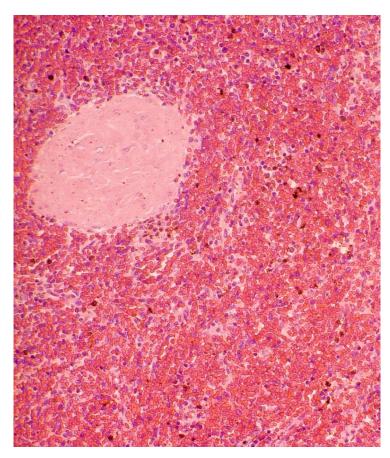
CORPUSCULAR HAEMOLYTIC ANAEMIAS

inborn, hereditary mostly (gene defects)

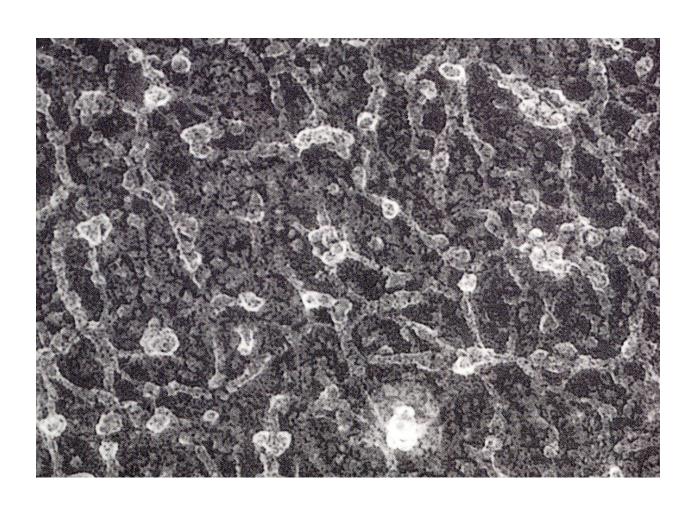
DEFECTS OF THE RED BLOOD CELL MEMBRANE

- hereditary spherocytosis, epitocytosis
- paroxysmal nocturnal haemoglobinuria (acquired)


DEFECTS OF ENERGY METABOLISM


- defects of enzymes of the pentose cycle (glucose-6-phosphatedehydrogenase, glutathion-reductase)
- defects of enzymes of the Embden-Mayerhof cycle (hexokinase,
 2,3-difosfoglycerate-mutase, pyruvátkinase)

DEFECTS OF HAEMOGLOBIN SYNTHESIS OR HAEMOGLOBINOPATHIES


- thalasaemias
- some haemoglobinopathies (e.g. methaemoglobinaemia ...)

Hereditary spherocytosis, epiptocytosis – spleen histology (*splenomegaly*)

HEREDITARY ELIPTOCYTOSIS A CELL MEMBRANE DEFECT (spectrin or other proteins)

Talassaemia, sickle cell anaemia

- Talassaemia (alfa, beta – major, minor)
- Sickle cell anaemia (HbS)

 production of globin chains is not quantitatively matched the most frequent hemoglobinopathy

clinica (phenotypic)
 manifestation differs

 ischemic episodes, pain, CNS and other organs damage

Thalassaemias

	Hb A (%)	Hb F/A2 %	Jiný Hb	Symptoms
normal Hb (a healthy person) talasaemia α (4 alely pro α-řetězec he	90–98	2–3/2–3		none
- α / α α / α α (- α/ - α)	90–98 90–98	2–3/2–3 2–3/2–3		žádné žádné, hypochromní erytrocyty/mikrocyty bez anémie
/ - α* /	60–70 0	2–5/2–3 0	30–40 H H/Bartův	anémie (100–70 g Hb/l) hydrops fetalis
talassaemia $β$ (2 alely pro $β$ -řetězec) $β^0/β$ nebo $β^+/β^{**}$ $β^+/β^{****}$	90–95 15–75	2–10/5–7 20–80/2–5		žádné, mírná anémie anémie (90–70 g Hb/l), hepato-,
β^0/β^{0****}	0	95–98/2–5		splenomegalie těžká anémie, poruchy vývoje, patologické fraktury kostí, velká potřeba transfúzí
hemoglobin Lepore ("L") (fúze genů pro β- a δ-řetězce) – heterozygot – homozygot	70–80 0	5–20/1–2 70–90/0	5–15 "L" 10–30 "L"	mírná anémie těžká anémie a jako u thalassaemia major

^{*} označovaná též jako "nemoc hemoglobinu H"

^{**} thalassaemia minor

^{***} thalassaemia intermedia

^{****} thalassaemia major

Talassaemia β

Hb A (%)	Hb F/A ₂	Manifestation
90–95	2–10/5–7	none, a mild anaemia
15–75	20-80/2-5	anaemia (90–70 g hepatosplenomegaly
	95–98/2–5 transfu	severe anaemia, Isions, developmental anomalies
	90–95	90–95 2–10/5–7 15–75 20–80/2–5 0 95–98/2–5 transfu

**** thalassaemia major

EXTRACORPUSCULAR HAEMOLYTIC ANAEMIAS (mostly acquired)

ANTIBODIES AGAINST RED BLOOD CELLS

- autoantibodies
- anti-Rh antibodies (e.g. fetal erythroblastosis)
- isoaglutinins

DAMAGE FROM PHYSICAL OR TOXIC FACTORS

- mechanical damage (DIC, heart valve prosthesis, march haemoglobinuria)
- extensive burns
- bacterial toxins
- parasitic infection (malaria)
- severe plasma hypotonia

Etiologic (casual) classification of anaemias

Causes of a decreased production of red blood cells or increased red blood cell losses are numerous.

Their identification allows for a rational, etiologicaly based (causative) therapy, if possible.

Summary of the most important items of the lecture.

- Anaemia may be symptom, sign or disease depending on level of the diagnostic precedure
- Anemia results from losses of red blood cells exceeding their production
- A new balance between losses and production of red blood cells may result in "stable" – chronic anaemia
- Identification of the cause of anaemia allows casual therapy
- Transfusions of red blood cells are only a symptomatic therapy