

ARRHYTMIAS

Department of Pathological Physiology

Martin Vokurka mvoku@lf1.cuni.cz

Unofficial study material

Arrhytmia

 Disturbance of heart rhytm: heart rate regularity

CASE REPORTS

- A) The patient feels irregularities in heart beat (palpitations), sometimes faster, sometimes slower. At times he feels weak and is about fainting.
- B) The patient repeatedly looses consciousness, is without puls. After a while his consciousness restores-
- C) The patient suddenly looses consciousness, without puls, no breathing. Without reanimation he dies.
- D) Young healthy person feels sometimes irregularities of heart beat w/o any other problem.

CASE REPORT

ALL PATIENTS HAVE DISTURBANCE OF HEART RHYTHM OF VERY DIFFERENT IMPORTANCE.

ECG and sometimes longer follow-up might be necessary.

Further the causes of irregularities should be searched for.

- 1. to find and name the type of arrhytmia
- 2. search for its cause
- 3. to treat the arrythmia and its cause

Heart conduction system

- Origin of the impuls
- Impuls coduction
- hierarchy

ARRHYTMIAS, Martin Vokurka

FIGURE 27-3 Relation between (A) the electrocardiogram and (B) phases of the ventricular action potential.

Unofficial study material

Silbernagl/Lang, Color Atlas of Pathophysiology © 2000 Thieme

Unofficial study material

Main causes of disturbance of conductive system

1. vegetative nervous system (*compensation of heart failure, shock, but also e.g. anxiety, pain in acute MI*)

Sympathetic nerves – increase heart rate, condution, excitability and risk of arrhytmias

Parasympathetic nerves – decrease HR and conduction

Drugs influencing VNS (adrenalin, atropin, betablockers...)

Main causes of disturbance of conductive system

- 2. Myocardial damage
- * ischemia, hypoxia, acidosis (CHD) + reperfusion

 * mechanical tension, hypertrophy, excessive dilatation, cardiomyopathy, fibrosis, amyloidosis, postinfarction scarring)
 – "electrical remodelation"

* inflammation (*myocarditis*)

Main causes of disturbance of conductive system

3. Electrolyte disturbances (potassium, calcium)

4. drugs, toxins (influencing VNS, antiarrhytmic drugs, digitalis etc.)

5. Electrical current (trauma, endokrinopathies etc.)

6. genetic causes (mutation of ionic channels)

lon channels

- Sodium channel
- Potassium channels
- Calcium channels

Channel regulation

* voltage

- * chemicals (incl. drugs)
- * mechanical deformation

Action potential and underlying conductance changes in a ventricular myocyte (from a small manapal)

Calcium channels:

I_{Ca-L}: long-lasting, plateau I_{Ca-T}: transient – only in pacemaker cells, diast. depolarization

Ion channels pathology

- mutation (hereditary)
- Pathological voltage
- Electrolyte concentration
- Influence of neurotransmitters (inlc. Vegetative nerves)
- Lack of energy (ATPase pumps)

Electrical nonhomogenity

- Focus of ischemia
- Focus of fibrotization and scarrin
- Local dilatation and/or hypertrophy

General consequences of arrhytmias

- negligent (vegetative influences)
 predictor of disease (e.g. ischemia)
 electrical instability progression of arrhytmias
 hemodynamic consequences
 impact on myocardial perfusion and metabolism
- General symptoms of arrhytmias •electrical: ECG •hemodynamic •subjective

Types of arrhytmias

I. *electrical events* disturbance in origin of the impuls disturbance in conduction combined

II. *localization* (*clinical importance !*) supraventricular (SV) – atrial, junctional ventricular (V)

III. resulting heart rate (effect on hemodynamics, ev. therapy) bradyarrhytmia tachyarrhytmia

Ectopy

 Area out of sinoatrial (SA) node which becomes the trigger of electrical activity

Extrasystole (premature beat, premature contraction)

 Heart beat is initiated by other parts of the heart than SA node, occurrs before the expected sinus beats

\bigtriangledown

Supraventricular extrasystole (SVES)

- normal pathway to the ventricle –
 QRS complex has normal shape
- the impulse can spread in a retrograde way -
- negative P wave with aberrant PQ intervale
- retrograde spreading can discharge SA node
- new impulse in SA node follows after "normalní" time after its discharge from retrograde spreading

CASE REPORTS

- A) The patient feels irregularities in heart beat (palpitations), sometimes faster, sometimes slower. At times he feels weak and is about fainting.
- B) The patient repeatedly looses consciousness, is without puls. After a while his consciousness restores-
- C) The patient suddenly looses consciousness, without puls, no breathing. Without reanimation he dies.
- D) Young healthy person feels sometimes irregularities of heart beat w/o any other problem.

- the spreading in the ventricle is aberrant QRS complex has *abnormal* shape
- it cannot spread to the atria in a retrograde way
- SA node has unchanged frequency of impulse formation, the impulse, however, cannot be conducted by AV node because of the refractory period in the ventricles
- the ventricles will be activated only by the next impulse from the SA node

SVES

Spreading from one site – monotopic

Spreading from more sites <u>polytopic</u>

serious are:

- frequent
- polytopic
- two or more following each other
- paired to normal beat:
- bigeminy (1+1), trigeminy (1+2)
- fenomen R/T (vulnerabile phase)

! predisposes to the ventricular tachycardia/fibrillation

Bigeminy

Unofficial study material

Tachyarrhytmia

importance of high HR for the circulation (preload, perfusion of the myocardium, energy and oxygen consumption)

Sinus tachycardia

increased activity of sympathetic nerves / decreasted activity of parasympathetic n. (atropin), catecholamines, drugs influencing VNS, psychic influences, exercise, fever, anemia, thyreotoxicosis etc. ECG is normal

Importance of heart rate for the heart function: duration of diastole

1. *filling of the ventricles* (preload) – decreased in high HR, increased in bradycardia

2. *cardiac output* – increased HR × decrease of preload in high tachycardia, very slow HR decreases CO

3. *perfusion of myocardium* – high HR impaires perfusion

4. blood pressure

5. *contractility* – tachycardia increases contractility (calcium entry)

6. *oxygen and energy consumption* – increased in tachycardia

SV tachycardia sometimes in healthy persons ECG: normal QRS, changes of P wave and PQ interval

dia in a 36-year-old woman with frequent episodes of sudden-onset, rapid, and regular heart rate. The ventricular rate is 183 bpm. Note the P waves at the end of the QRS complex (arrows in V₁). Symptoms persisted despite treatment with oral verapamil and metoprolol, and the patient was referred for radiofrequency ablation. AV-node reentry tachycardia was diagnosed on electrophysiologic testing. The patient underwent successful ablation of the "slow pathway" with resolution of symptoms.

Ventricular tachycardia

urgent!! hemodynamically and electrically (development of ventricular fibrillatio), ECG: fast, irregular, bizarre QRS

Fibrillation

- rapid, irregular, and unsynchronized contraction of muscle fibers
- Chaotical electrical events
- Inadequate mechanical response virtually no output
- Atrial
- Ventricular

Atrial fibrillation

very frequent, mainly in elderly people (CHD), in younger more often in thyreotoxicosis or postrheumatical mitral valve disease (mainly stenosis)

Atrial fibrillation

- absolutely irregular el. activity of atria with frequency up to >300/min, without efficient contractions
- only some of the impulses are conducted to the ventricles: pulse is *absolutely* irregular, the filling of the ventricles is variable (pulse deficit can occur)
- ECG: fibrillation waves (f) between QRS complexes, QRS complexes have normal shape

THE PATIENTS HAVE ABSOLUTELY IRREGUALAR PULSE

Atrial fibrillation – hemodynamics

- no contraction of atria, their contribution to the ventricular filling is missing preload can be decreased (important mainly in heart failure)
- Variable preload in the ventricles (pulse deficit)
- frequently thrombi in atria (embolism !): anticoagulation therapy

FIGURE 27-10 Electrocardiographic tracings of atrial arrhythmias. Atrial flutter (*first tracing*) is characterized by the atrial flutter (F) waves occurring at a rate of 240 to 450 beats per minute. The ventricular rate remains regular because of the conduction of every sixth atrial contraction. Atrial fibrillation (*second tracing*) has grossly disorganized atrial electrical activity that is irregular with respect to rate and rhythm. The ventricular response is irregular, and no distinct P waves are visible. The *third tracing* illustrates paroxysmal atrial tachycardia (PAT), preceded by a normal sinus rhythm. The *fourth tracing* illustrates premature atrial complexes (PAC).

CASE REPORTS

- A) The patient feels irregularities in heart beat (palpitations), sometimes faster, sometimes slower. At times he feels weak and is about fainting.
- B) The patient repeatedly looses consciousness, is without puls. After a while his consciousness restores-
- C) The patient suddenly looses consciousness, without puls, no breathing. Without reanimation he dies.
- D) Young healthy person feels sometimes irregularities of heart beat w/o any other problem.

Atrial flutter

less frequent, el. activity in the atria is regular

usually more serious than fibrillation, depending on the resulting HR

Ventricular fibrillation

acute, life-threatening situation with complet hemodynamic failure

-no cardiac output,
-no pulse,
-unconscioussness,
-reanimation required to save life

frequent cause of death in the early acute myocardial infarction cardiomyopathy

defibrillation

RHYTHM STRIP: []-25 mm/sec;[cm/mY

CASE REPORTS

- A) The patient feels irregularities in heart beat (palpitations), sometimes faster, sometimes slower. At times he feels weak and is about fainting.
- B) The patient repeatedly looses consciousness, is without puls. After a while his consciousness restores-
- C) The patient suddenly looses consciousness, without puls, no breathing. Without reanimation he dies.
- D) Young healthy person feels sometimes irregularities of heart beat w/o any other problem.

Bradyarrhytmias

Sinus bradycardia vagus normal: exercise pathology: acute myocardial infarction of diaphragmatic wall cranial hypertension, some infections...

sick sinus syndrome

Sick sinus syndrome

-sinus bradycardia
-insufficient increase in HR during exercise
-sinoatrial blocks
-paroxysmal SV tachycardias or atrial fibrillation

bradycardia-tachycardia syndrome

<u>Blocks</u>

I. slowing, prolongation II. partial blockade III. complete blockade

Sinoatrial block

Atrioventricular block
I. degree
II. degree
type Wenckebach (Mobitz I)
type Mobitz (Mobitz II)
III. degree
Adams-Stokes attacks

Unofficial study material

Wenkebach (Mobitz I) prolongation of PR intervals

Mobitz (Mobitz II) PR intervals do not change

2nd degree AV block (type II) with LBBB

Ratio atria : ventricles (P:QRS)

Unofficial study material

Block III. degree - AV dissociation

Complete block, no propagation to the ventricles No ventricular complexes and contractions No cardiac output Unconsciousness, no puls

Escaped ventricular rhythm

CASE REPORTS

- A) The patient feels irregularities in heart beat (palpitations), sometimes faster, sometimes slower. At times he feels weak and is about fainting.
- B) The patient repeatedly looses consciousness, is without puls. After a while his consciousness restores (Adams-Stokes)
- C) The patient suddenly looses consciousness, without puls, no breathing. Without reanimation he dies.
- D) Young healthy person feels sometimes irregularities of heart beat w/o any other problem.

Uncosciousness

- Breathing ?
- Pulse?

Unconsciousness + no pulse

- Ventricular fibrillation
- AV blok III. degree
- Asystoly
- Sick sinus syndrome

Abnormal AV conduct

accessory pathways preexcitation syndromes

<u>WPW syndrome (Wolff-Parkinson-White)</u> abnormal *Kent* pathway (out of AV node)

PQ interval shorter and changed, changed QRS complex re-entry mechanisms can lead to more serious arrhytmias (SV tachycardia, atrial fibrillation or flutter)

LGL syndrom (Lown-Ganong-Levin)

accessory pathway connected to the distal part of AV node (James fibres) or to the His bundle (Brechenmacher fibers) PQ shortened, QRS of normal shape

main cause of tachyarrhytmias

- two pathways proximally and distally connected
- different conductivity (slow)
- unidirectional conduction block of 1 pathway

ischemia, fibrosis typically accessory pathways

Treatment of arrhytmias

1. Vegetative nervous system

stimulation of n. vagus – increase of parasympatethic tone – treatemnt of SV tachycardia: massage of carotic sinus, Valsalve, pressure on eye bulbes drugs – sympatolytic drugs (betablockers), sympathomimetic (epinefrin), parasympatolytic drugs (atropin)

- 2. <u>Antiarrhytmic drugs</u> acting on ionic channels
- 3. <u>Electrical</u> treatment
- defibrillation
- implantable defibrillators (ICD)
- cardiovesion
- cardiostimulation

4. Other treatment

ablation or surgery (e.g. surgery of the accessory pathway)

- changes in action potential
- re-entry
- electrical nonhomogenity

ARYTMOGENIC MECHANISMS

- * changes in automaticity
- * triggered activity
- * re-entry

Important parameters in electrical events:

* <u>excitability</u>: capacity of cells to respond to the stimulus of certain insenzity (by depolarization, MAP)

automaticity: capacity to produce spont. impulses diastolic depolarization (special phase 4 of MAP, threshold potential, influence of nerve stimulation)

* <u>conductibility</u>: capacity to transfer impuls to the neighbouring cells amplitude, start of the MAP, cellular junctions, size, shape of the cells

* <u>refracterity</u>: incapacity to excitation after previous activation (absolute, relative)

Membrane action potential

$$\begin{split} I_{Na} &- \text{fast sodium current} \\ I_{to} &- \text{``transient outward'' (potassium from the cell) + chlorides to the cell} \\ I_{ca} &- \text{calcium to the cell} \\ I_{K} &- \text{potassium from the cell (rapid, slow)} \\ I_{K1} &- \text{flow of potassium from the cell} \end{split}$$

Antiarhytmic drugs

- Influence sodium or calcium channels
- Influence vegetative nerves

abnormal repolarization repeated spontaneous depolarization

1. Early afterdepolarization (EAD)
Before the end of repolarization (phase 3) new depolarization occurs due to opening of channels for Na⁺ and Ca⁺⁺.
Often in long QT, bradycardia, hypokalemia (long MAP)

Occurrs mainly in long QT, bradycardia, hypokalemia (long MAP), hypoxia

Consequences -Fast HR (tachyarrhytmia) -torsade de pointes

interval QT longer

<u>importance</u>: connected to frequent serious ventricular tachyarrhytmias length and *dispersion*

Acquired formes

- electrolyte dysbalance (hypokalemia,

hypomagnesemia, hypokalcemia)

- drugs (antiarrhytmic drugs,

tricyclic antidepressants, ATB aj.)

 $QTc = \frac{QT}{\sqrt{RR}}$

Klasické komorové tachykardie typu "torsades de pointes", synkopy, nebezpečí náhlé smrti Podle typu mutace vznikají více v klidu (sodíkový kanál) nebo naopak při námaze (emoci, adrenergní stimulaci)

Mechanismus vzniku souvisí s časnými "afterpotenciály" (EAD)

2. Delayed afterdepolarization (DAD) After the repolarization

Vulnerable phase

between phae 3 and 4 of MAP, sensitivity to the stimuli with low intensity

on ECG declining part of T wave extrasystole can provoke ventricular tachycardia of fibrillation (phenomenon R/T)

Mutations of ion channels

<u>Roman-Ward sy</u>: AD hereditary, more frequent <u>Jervel - Lange-Nielsen sy</u>: more serious, deafness, AR hereditary

over 100 mutations of 5 proteins potassium channels – KvLQT1 (KCNQ1) or HERG (α subunits) or β subunits: decreased function sodium channel – SCN5A (mutated also in <u>Brugada sy</u>): increased function \rightarrow prolongated repolarization