

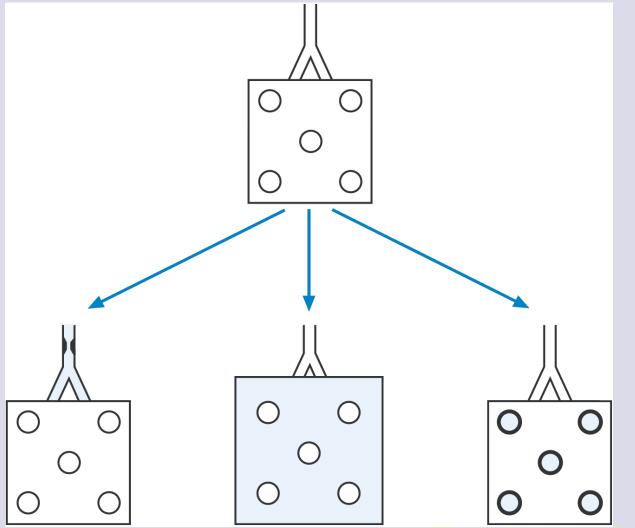
Coronary heart disease (CHD)

Unofficial study material

Martin Vokurka mvoku@lf1.cuni.cz

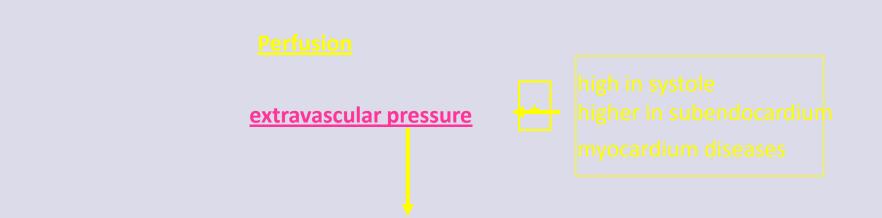
Winter Semester

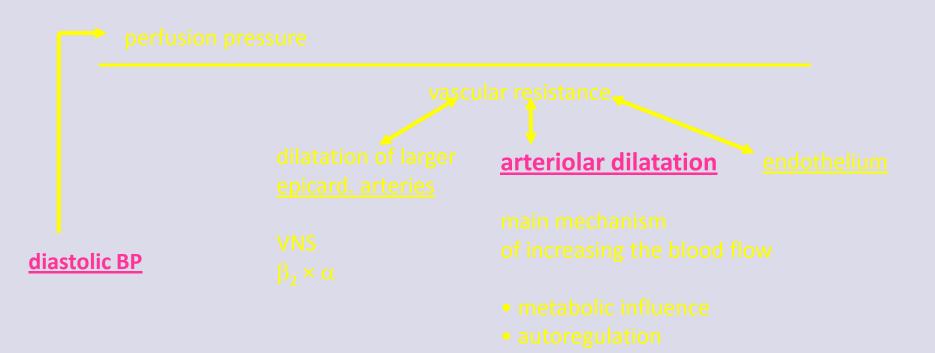
Unofficial study material


<u>Blood flow</u>: resting: 250 ml/min

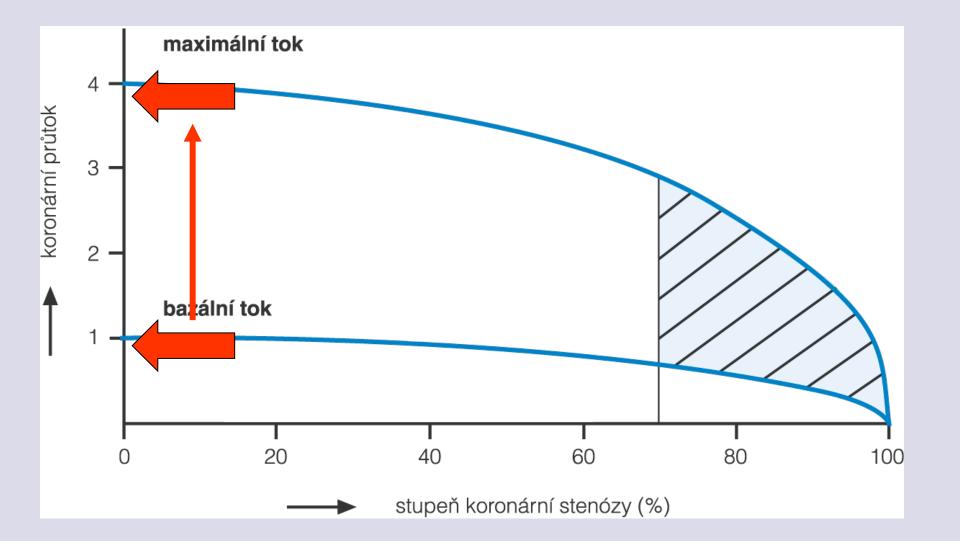
Main components:

- coronary arteries in epicardial part
- small coronary vessels
- myocardium


Perfusion pressure x resistance



Zátěžová echokardiografie, Maxdorf



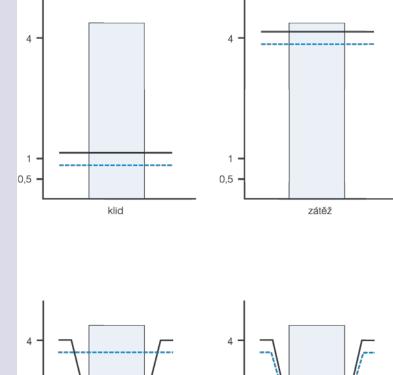
pressure difference between the beginning of coronary arteries and estuary of coronary sinus

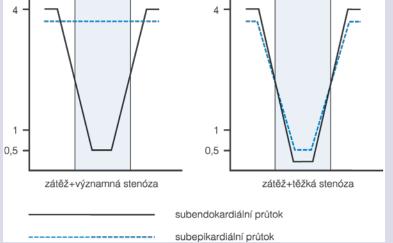
<u>Coronary reserve</u>: maximal increase of blood flow through myocardium – cca 4× vasodiatation of small vessels

Differences in perfusion: impaired perfusion of subendocardial parts

Unofficial study material Zatežová echokardiografie, Maxdorf

Blood flow through the subendocardial vessels is less during systole


- than in the outer coronary vessels.
- To compensate, the subendocardial vessels are far more
- *extensive* than the outermost arteries, allowing
- a disproportionate increase in subendocardial flow during diastole.



Because blood flow mainly occurs during diastole, there is a risk for subendocardial ischemia

- * diastolic pressure is low
- * elevation in diastolic intraventricular pressure sufficient to compress the vessels in the subendocardial plexus
- * rapid heart rates, the time spent in diastole is greatly reduced.

Zátěžová echokardiografie, Maxdorf

1

Oxygen extraction: almost maximal (as in intensively working skeletal muscles)

AV difference: 140–160 ml O₂/L blood

Oxygen consumption (AV difference \times flow): rest – 140 \times 0,25 = 35 ml exercise – 160 \times 1,00 = 160 ml Mainly achieved by increase of flow – vessel parameters are crucial for oxygen delivery to the myocardium during exercise 12

Energy consumption:

- 90 % mechanical activity (contraction, relaxation)
- 9,5 % proteosynthesis
- 0,5 % electrical activity

- tension in the wall of LV ~ blood pressure
- inotropy
- heart rate

Energy sources in the myocardium:

rest – FFA, glucose, lactate exercise – increase of lactate up to 2/3

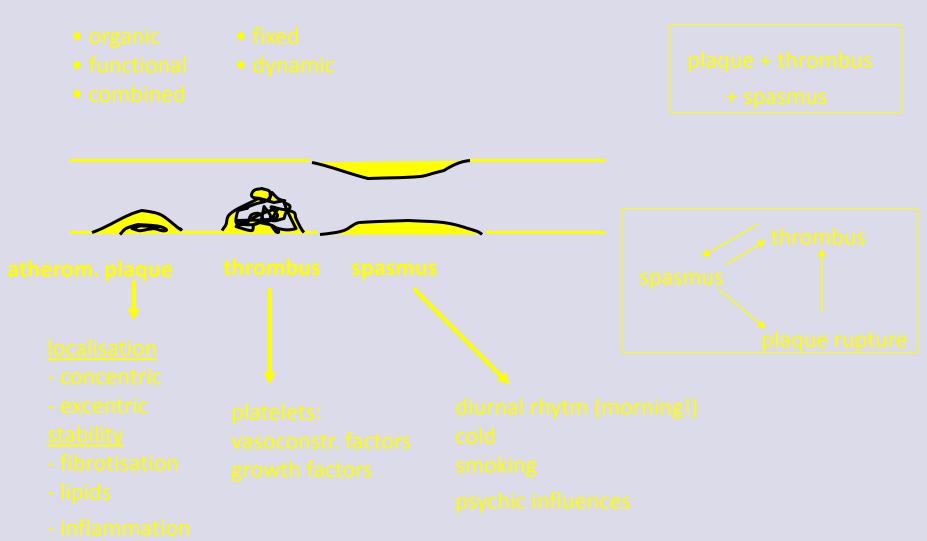
Factors infuencing oxygen consumption:

- heart work
- contractility
- heart rate
- myocardium properties: wall tension (dilatation, afterload blood pressure), hypertrophy
- adrenergic stimulation

Factors infuencing oxygen delivery to the myocardium:

- parcial tension of oxygen in the environment
- respiratory functions
- hemoglobin
- blood flow through myocardium

SO.

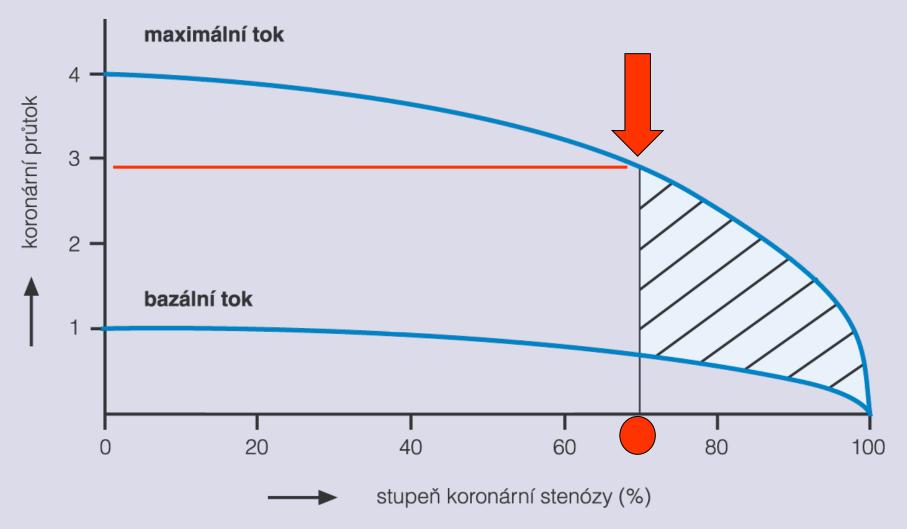

Ischemia

insufficient delivery of oxygen and nutrients and insufficient outflow of metabolites from the tissues due to the impaired perfusion

Imbalance between metabolic requirements and perfusion:

- **1.** increased requirements- simulation by
- e exercise tests
- 2. impaired perfusion
- 3. combination

Vessel narrowing



Impact of the size of stenosis on hemodynamics of coronary blood flow:

- do 40 % without influence
- 40–70 % ischemia not apparent in physiological exercise
- **70**–90 % ischemia not in resting, distinct in exercise
- over 90 % ischemia even in rest

Hemodynamically unimportant atherosclerotic plaque can be the cause of life-threatening myocardial infarction:

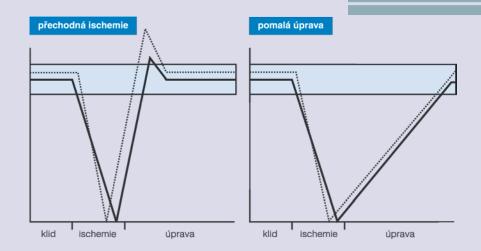
rupture \Rightarrow thrombus + spasmus \Rightarrow necrosis \Rightarrow arrhytmia (ventricular fibrillation) \Rightarrow death

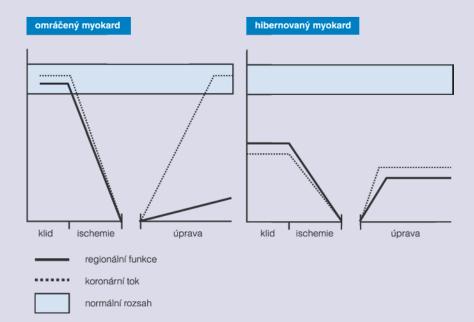
Zátěžová echokardiografie, Maxdorf

Consequences of ischemia:

- metabolic changes: ATP depletion, lokal acidosis, increased inflow of *calcium* to the cells
- impaired contractility (decrease of stroke volume):
- impaired relaxation (*diastolic dysfunction*)
- impaired electrical events (arrhytmias, ECG)
- morphological changes (*myocytes*, *necrosis*, *fibrotisation*, *steatosis etc.*)
- clinical symptoms (pain, arrhytmia, heart failure)

ischemia durationreperfusion


Stunned myocardium


perfused but not functioning reversible continuous dysfunction of myocardium after reperfusion without apparent changes

chronically hypoperfused and functionally impaired situation with continuously decreased blood flow accompanied by impaired contractility

adaptation of cells to decreased energy delivery

increased resistence of myocardium against damage due to ischemia

caused by preceding ischemia and reperfusion

Collaterals

Angiogenesis

VEGF (vascular endothelial growth factor)FGF (fibroblast growth factor)Angiopoetin
and others...

Therapeutical angiogenesis

gene therapy: direct intramyocardial aplicatioon of plasmid or use of vector (adenovirus) VEGF or FGF

Revascularization by invasive treatment

- PTCA (percutanneous transluminal coronary angioplastic)
- stents
- bypass

- oxygen radical species: source in mitochondria, or leukocytes,xanthinoxidase (less important in myocardium)
- increased amount of intracellular calcium
- neutrophils: radical formation, mechanical plugging of capillaries, proteolytic enzymes

clinically - arrhytmias

• Angina pectoris (AP)

- <u>stable</u>: fixed stenosis
- atherosclerotic plaque decreases coronary reserve, increased oxygen requirements of myocardium (tachycardia) ... subendocardial ischemia
- Other contributing factors: anemia, increased blood viscosity, diastolic hypotension, hypertrophy of myocardium

• <u>vasospastic</u> (Prinzmetal): spasmus of epicardial artery, transmural ischemic changes; in rest (frequently nocturnally), reperfusion may be accompanied by arrythmia

Mechanisms (?):

- hyperactive sympathetic nervous system
- defect in the handling of calcium in vascular smooth muscle
- imbalance between endothelium-derived relaxing and contracting factors, incl. NO

unstable AP + acute MI

<u>Unstable AP</u>: unstable stenosis rupture, thrombosis, spasmus, uncomplete obturation + shorter time of ischemia without necrosis 31

Plaque rupture

- spontaneously
- triggered by hemodynamic factors blood flow characteristics vessel tension.

Sudden surge of sympathetic activity: an increase in blood pressure, heart rate, force of cardiac contraction, and coronary blood flow

Plaque rupture also has a diurnal variation, occurring most frequently during the first hour of arising.

It has been suggested that the sympathetic nervous system is activated on arising, resulting in changes in platelet aggregation and fibrinolytic activity that tend to favor thrombosis. This diurnal variation in plaque rupture can be minimized by β-adrenergic blockers and aspirin 32

Acute myocardial infarction (AMI)

thrombosis leading to the <u>*necrosis*</u> of myocardium

transmural (Q) nontransmural (nonQ)

Symptoms

- pain
- vegetative nerves activation (anxiety, sweating, tachycardia)
- atypical (without important pain, abdominal symptoms)
- arrhytmias
- heart failure

Basic diagnostics

Necrosis

- enzymes: CK-MB, AST, LD
- structural proteins: myoglobin, troponin
- reaction to the necrosis: leucocytosis, RBC sedimentation rate

Electrical changes

- ECG: development of the curve localisation + infarction extent
- arrhytmias

36

Size of the necrosis

- extent of the blood flow
- collaterals
- myocardial needs of oxygen
- (heart rate, wall tension -
- afterload / systolic BP)
- ischemic preconditioning

Sequelae of the necrosis

hemodynamic (disturbances of contractility, decrease of ejection fraction) – large necrosis or repeated infarction - heart failure, if about 40% of myocardium destroyed, cardiogenic shock can develop

electrical instability – arrhytmias, ventricular fibrillation, sudden death

remodelation of the ventricle – scarring, aneurysma (dyskinesis, thrombosis with embolism), dilatation – importance for prognosis

• *rupture* of the wall, aneurysma (pericardial tamponade), septum, papillary muscle

Localisation of the necrosis

- *layer of the wall*: transmurale, subendocardial, intramural

part of the heart: according to the coronary artery anterior wall (RIA)
 lateral wall (RC)
 diaphragmatic (RIP)

39

Syndrome X

stable AP + normal coronarography small vessels

Primary prevention

Treatment of risk factors

Blood flow through myocardium

Vessels (calcium antagonists, vasodilatation) Decrease of oxygen consumption (betalytics) Coagulation (aspirin...)

Treatment of complications

Revascularization

Fibrinolysis Percutaneous coronary arteries treatment – angioplastics (PTCA), stent Bypass Angiogenetic therapy

The End

Unofficial study material