Hepcidin, the hormone of iron metabolism, is bound specifically to {alpha}-2-macroglobulin in blood

Gabriela Peslova, Jiri Petrak, Katerina Kuzelova, Ivan Hrdy, Petr Halada, Philip W. Kuchel, Shan Soe-Lin, Prem Ponka, Robert Sutak, Erika Becker, Michael Li-Hsuan Huang, Yohan Suryo Rahmanto, Des R. Richardson and Daniel Vyoral
Hepcidin, the hormone of iron metabolism, is bound specifically to α2-macroglobulin in blood

Gabriela Peslova,1 Jiri Petrack,1,2 Katerina Kuzelova,1 Ivan Hrdy,3 Petr Halada,4 Philip W. Kuchel,5 Shan Soe-Lin,6 Prem Ponka,6 Robert Sutak,7 Erika Becker,7 Michael Li-Hsuan Huang,7 Yohan Suryo Rahmanto,7 *Des R. Richardson,7 and *Daniel Vyoral1,2,7

1Institute of Hematology and Blood Transfusion, Prague, Czech Republic; 2Charles University in Prague, First Faculty of Medicine, Institute of Pathological Physiology, Prague, Czech Republic; 3Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; 4Institute of Microbiology v.vi, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 5School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia; 6Lady Davis Institute, Montréal, QC; and 7Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia

Hepcidin is a major regulator of iron metabolism. Hepcidin-based therapeutics/diagnostics could play roles in hematology in the future, and thus, hepcidin transport is crucial to understand. In this study, we identify α2-macroglobulin (α2-M) as the specific hepcidin-binding molecule in blood. Interaction of 125I-hepcidin with α2-M was identified using fractionation of plasma proteins followed by native gradient polyacrylamide gel electrophoresis and mass spectrometry. Hepcidin binding to nonactivated α2-M displays high affinity (Kd 177 ± 27 nM), whereas hepcidin binding to albumin was nonspecific and displayed nonsaturable kinetics. Surprisingly, the interaction of hepcidin with activated α2-M exhibited a classical sigmoidal binding curve demonstrating cooperative binding of 4 high-affinity (Kd, 0.3 μM) hepcidin-binding sites. This property probably enables efficient sequestration of hepcidin and its subsequent release or inactivation that may be important for its effector functions. Because α2-M rapidly targets ligands to cells via receptor-mediated endocytosis, the binding of hepcidin to α2-M may influence its functions. In fact, the α2-M-hepcidin complex decreased ferroportin expression in J774 cells more effectively than hepcidin alone. The demonstration that α2-M is the hepcidin transporter could lead to better understanding of hepcidin physiology, methods for its sensitive measurement and the development of novel drugs for the treatment of iron-related diseases. (Blood. 2009;113:6225-6236)

Introduction

The hormone hepcidin plays a role in orchestrating iron metabolism.1-12 This peptide, originally discovered in urine as a bactericidal molecule,13 was later shown to be a regulator of iron metabolism.3,5 In fact, it plays an important role in conditions of altered iron demand.3,5

The function of hepcidin is regulation of transmembrane iron transport.4,5 Hepcidin binds to its cell surface receptor, ferroportin (solute carrier family 40 [iron-regulated transporter], member 1), leading to internalization and degradation of the protein complex by the lysosome.1 Because ferroportin enables iron efflux from enterocytes, hepatocytes, and macrophages, its internalization after hepcidin binding leads to decreased iron release.1 Hence, the hepcidin-mediated decrease in ferroportin iron export from enterocytes into blood leads to depressed intestinal iron absorption.3,4 At the same time, iron export from hepatocytes and macrophages is blocked, which further decreases serum iron.3,5

Hepcidin also plays a role during inflammation, infection, and cancer.3,5 Under these conditions, iron is shifted from the circulation into stores, making it less available.3 In anemia and hypoxia, hepcidin regulates iron availability for erythropoiesis. In the future, hepcidin may find a place in treating disease states.3,5 Furthermore, hepcidin is predicted to become an indicator of body iron stores.

We investigated the presence of plasma hepcidin-binding molecules because the identification of such entities will provide new insights into hepcidin function. Indeed, it is known that many hormones are transported in the blood by carrier molecules,14-16 but a specific hepcidin-binding protein has not been identified. Hence, knowledge of hepcidin transport is essential for understanding its distribution and may be important for its measurement in plasma.

In this study, we incubated blood plasma with 125I-labeled human hepcidin and then separated plasma proteins using native electrophoresis. For the identification of these molecules, the complexes were purified using a native 2-dimensional separation technique with identification by mass spectrometry.17 We identified α2-macroglobulin (α2-M) as the specific hepcidin-binding molecule in plasma.

Methods

Chemicals, plasma, and serum

Chemicals were from Sigma-Aldrich (St Louis, MO). Blood was obtained from healthy volunteers (2 females, 3 males) after the study was approved by the Ethics Committee (Institute of Hematology and Blood Transfusion, Prague) and informed consent was obtained from the participants in the study.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

© 2009 by The American Society of Hematology
Table 1. Serum Fe, transferrin saturation, and serum ferritin levels in blood from healthy volunteers in this study

<table>
<thead>
<tr>
<th>Healthy volunteers</th>
<th>Serum Fe,† μmol/L</th>
<th>Tf saturation,‡ %</th>
<th>Serum ferritin,‡ μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, A</td>
<td>10.86</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>Female, B</td>
<td>22.32</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>Male, A</td>
<td>9.14</td>
<td>50</td>
<td>98</td>
</tr>
<tr>
<td>Male, B</td>
<td>25.41</td>
<td>26</td>
<td>79</td>
</tr>
<tr>
<td>Male, C</td>
<td>16.45</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>16.84 ± 5.75</td>
<td>37.4 ± 7.22</td>
<td>66.4 ± 22.64</td>
</tr>
</tbody>
</table>

References values from Shinton10 and Bick.19
†Normal values: female (7.16-26.85 μmol/L), male (8.95-26.84 μmol/L).
‡Normal values: female (20%-55%).
§Normal values: female (12-150 μg/L), male (15-150 μg/L).

accordance with the Declaration of Helsinki. To obtain serum, blood was collected into vacuutainer tubes, allowed to stand 15 minutes and centrifuged (2000g for 25 minutes at 20°C). To obtain plasma, blood was collected into vacuutainer tubes and centrifuged (1500g for 5 minutes at 20°C). Plasma or serum were pooled and used for experiments. Analysis of these blood samples by the Institute of Hematology and Blood Transfusion demonstrated they were within the normal range for serum iron, serum ferritin, and transferrin saturation (Table 118,19).

Reagents

Unmodified (DTHFPICIFCAGCGCHRSGMCCKT) and M21Y-modified (DTHFPICIFCAGCGCHRSGGYCCTK) hepcidin peptides were custom-synthesized and purity was confirmed by Clonester Peptide Services (Brno, Czech Republic). Goat anti–human α2-M antibody (sc-8514) was from Santa Cruz Biotechnology (Santa Cruz, CA).

Hepcidin renaturation

We used an established method for hepcidin renaturation based on dissolving hepcidin in denaturant (6 M guanidine HCl), subsequent reduction with dithiothreitol, followed by purification using reversed-phase chromatography and slow oxidation.1

Hepcidin concentration

We compared 3 methods for determining hepcidin concentration: (1) absorbance difference at 215 to 225 nm20; (2) quantitative determination of sulfhydryl groups21; and (3) measurement of absorbance at 205 nm.22 All methods yielded the same concentration, and, subsequently, method 1 was used.

Radiolabeling of hepcidin

Hepcidin was labeled with 125I via the protocol of Nemeth et al using IodoBeads (Pierce Biotechnology, Rockford, IL). This protocol maintains the conformation of hepcidin.1 Iodinated hepcidin was then purified using a Waters µBondapack C18 WAT027324 column (Waters, Milford, MA) prewet with methanol and equilibrated with 0.1% trifluoroacetic acid (TFA).

Determination of biologic activity of renatured hepcidin

The biologic activity of hepcidin was determined according to Rivera.23 Twelve to 14 days before the experiment, 5-week-old female C57Bl/6 mice (Charles River Laboratories, Wilmington, MA) were switched to a low-iron diet (Harlan-Teklad, Madison, WI). These were injected intraperitoneally with 50 μg hepcidin, controls were injected with phosphate-buffered saline (PBS). Six hours later, the mice were anesthetized with avertin and blood was collected. The blood was centrifuged at 700g for 15 minutes at 4°C and the sera collected. Serum iron and total iron-binding capacity were then analyzed (Jewish General Hospital, Montreal, Canada). Animal studies were performed with approval of the Animal Care Committee of the Lady Davis Institute for Medical Research/McGill University, Montreal, QC.

Fractionation of blood plasma proteins by FPLC

Fractionation was performed at 25°C. Blood plasma (500 μL) was diluted with 4.5 mL buffer A (50 mM Tris-HCl, pH 8.0) and loaded onto a MONO Q-5/50 GL column (GE Healthcare, Little Chalfont, United Kingdom) connected to a BioLogic HR (Bio-Rad Laboratories, Hercules, CA) fast-pressure liquid chromatography (FPLC). The fractions were eluted using a linear gradient (0-1 M) of NaCl in buffer A.

Native gel electrophoresis and gel processing

Samples were separated on a linear gradient (3%-12%) native polyacrylamide gel containing Triton X-100 in Tris-glycine buffer.1 The gel was exposed and scanned on a phosphorimager (Fuji, Cypress, CA). The radiogram was analyzed using Aida software (Raytest, Straubenhardt, Germany).

Analysis of the hepcidin-α2-M interaction using FPLC

Binding of hepcidin to plasma proteins or purified α2-M was studied via size-exclusion chromatography using FPLC (BioLogic DuoFlow System; BioRad) fitted with a Superdex 200 10/300 GL (GE Healthcare) column. Samples of plasma or purified α2-M (Sigma-Aldrich) were incubated with 125I-hepcidin for 1 hour at 37°C, loaded into the column and eluted with 0.14 M NaCl/0.01 M Hepes (pH 7.4) at 25°C. Radioactivity in the fractions was measured with a 1480 Wallac Wizard 3 γ gamma counter (Turku, Finland).

Enzymatic in-gel digestion and μLC-mass spectrometric analysis

In-gel digestion and mass spectrometric analysis was performed as described.17 Proteins were reduced with 30 mM Tris-(2-carboxyethyl)phosphine hydrochloride at 65°C for 30 minutes and alkylated by 30 mM iodoacetamide for 60 minutes in the dark. After overnight digestion at 37°C in buffer containing 0.01% 2-mercaptoethanol, 0.1 M 4-ethylmorpholine acetate, 10% MeCN, and sequencing grade trypsin (20 ng/μL; Promega, Madison, WI), the peptides were purified on a macrotrap column packed with polymeric reversed-phase material (Michrom BioResources, Auburn, CA). The column was connected to an LCQDECA ion trap mass spectrometer (Thermo Scientific, San Jose, CA) equipped with a nanoelectrospray ion source. Full scan spectra were recorded over 350 to 2000 Da followed by MS/MS scans of the 3 most intense ions in the preceding full scan. Peak lists were analyzed using SEQUEST (Thermo Fisher Scientific, Waltham, MA).

Activation of α2-M by methylimamine

Protease-binding to α2-M triggers a conformational change converting it to an activated form able to bind hormones.24 Proteases cannot be used to activate α2-M due to their damaging effects, which would prevent proper binding analysis. Considering this, previous workers demonstrated this conformational change can be mimicked by treatment with methylimamine.24-26 Furthermore, physicochemical and functional data suggest that methylimamine activated α2-M (α2-M-MA) closely resembles the structure and function of protease-activated α2-M.25,26

In vitro conversion of α2-M by methylimamine into the activated protein (α2-M-MA) was achieved using an established technique where samples of α2-M (1.4 μM; Sigma-Aldrich) were treated with 200 mM methylimamine/0.05 M Tris/HCl (pH 8.1).27 Unreacted methylimamine was removed from α2-M-MA via a Sephadex G-25 centrifugal column.28,29

Determination of α2-M and α2-M-MA-hepcidin complex stoichiometry by ultracentrifugation

α2-M (Mw 720 000 Da) can be sedimented by ultracentrifugation.30 We exploited this method to determine α2-M-hepcidin and α2-M-MA-hepcidin complex stoichiometry.

The mixture of α2-M or α2-M-MA with hepcidin (molar ratio, 1:5; at this molar ratio hepcidin is above the α2-M and α2-M-MA saturating concentration) was incubated at 37°C for 2 hours and then subjected to ultracentrifugation at 180 000g for 2 hours at 37°C. Control tubes contained hepcidin only. The amount of hepcidin bound to α2-M or α2-M-MA was...
where \(M \) denotes hepcidin visualized using ECL (GE Healthcare). Bands on x-ray film were the secondary antibody for 1 hour at RT both in 10% skim milk primary antibody was for 2 hours at room temperature (RT), and with Aldrich) conjugated with horseradish peroxidase. Incubation with the Briefly, protein samples (100 \(\mu \)g) were separated on NuPAGE Bis-Tris 4% gelation experiments), we calculated the free hepcidin concentration for each well by subtraction of the bound hepcidin obtained from the y-axis values. The binding hyperbola were processed using GraphPad Prism 3.00 (GraphPad Software, San Diego, CA).

The binding data for \(\alpha_2 \)-M-MA were fitted using a multisite Hill equation.31 The free hepcidin concentration was calculated using the numerical solution of an implicit binding function (see equations 1-3). The data analysis was based on the concerted binding reaction:

\[
M + n H \leftrightarrow MH_n
\]

with the dissociation equilibrium constant:

\[
K_d = \frac{[M][H]^n}{[MH_n]}
\]

where \(M \) denotes \(\alpha_2 \)-M; H, hepcidin; \(n \), the cooperativity coefficient; and the square brackets denote concentration. We derived the modified Hill equation, that is expressed in terms of the total concentrations (hence subscript 0) of hepcidin and macroglobulin:

\[
Y = \frac{([H]_0 - nY[M]_0)^n}{K_d^n + ([H]_0 - nY[M]_0)^n} + B
\]

where \(Y \) is the ratio of the concentration of the hepcidin-\(\alpha_2 \)-M complex to that of total \(\alpha_2 \)-M. The fitting of equation 3 to the data involved iteration of the values of \(n \) and \(K_d \) combined with the numerical solution of equation 3, using NSolve in Mathematica.32 Refinement of the choices of values for \(n \) and \(K_d \) were made by inspection of fit of the function to the data. The use of nonlinear regression was not possible because of the implicit (in \(Y \)) nature of equation 3.

Cell culture and Western analysis

J774 cells (ATCC) were grown using standard procedures33 and used when at approximately 90% confluence to maximize ferroportin detection. Western analysis was performed by established methods34,35 using the Invitrogen NuPAGE Novex System for optimal detection (Carlsbad, CA). Briefly, protein samples (100 \(\mu \)g) were separated on NuPAGE Bis-Tris 4% to 12%, 1.5 mm gels (Invitrogen) and then transferred to Invitroten PVDF membranes. The primary antibodies used were anti-ferroportin (1/2500; Dr D. Haile, Audie Murphy Hospital, San Antonio, Texas) and anti-\(\beta \)-actin (1/10 000; clone AC-1; Sigma-Aldrich). Secondary antibodies used were anti-rabbit (1:2000; Sigma-Aldrich) and anti-mouse (1:10 000; Sigma-Aldrich) conjugated with horseradish peroxidase. Incubation with the primary antibody was for 2 hours at room temperature (RT), and with the secondary antibody for 1 hour at RT both in 10% skim milk (Tris-buffered saline/0.1% Tween 20; pH 7.4). The protein bands were visualized using ECL (GE Healthcare). Bands on x-ray film were quantified by scanning densitometry and analyzed using Quantity One (Bio-Rad).

Statistical analysis

Results were expressed as mean plus or minus SD. Data were compared using the Student t test. Results were considered significant for \(P \) values less than .05.

Results

\(^{125}\text{I} \)-labeling of native and M21Y hepcidin

We hypothesized that similar to other hormones, hepcidin circulates bound to specific binding protein(s).1,6,36 We examined the presence and identity of binding proteins using \(^{125}\text{I} \)-hepcidin and native nondissociative separation techniques. Synthetic hepcidin must be renatured to be a soluble and effective signaling molecule. This was performed using established methods and the biologic activity tested using mice.1 Active hepcidin can be labeled by \(^{125}\text{I} \) and used as a tracer. Because tyrosine, which is considered to be optimal for efficient radioiodination, is not present in natural human hepcidin, modified hepcidin with a Met/Tyr23 substitution (M21Y modified) was also assessed, as in previous studies.1,6 This modified hepcidin was compared with unmodified (physiologically relevant) hepcidin.

In preliminary experiments, we compared the \(^{125}\text{I} \)-labeling efficiency of both unmodified hepcidin (DTHFPICIFCCGCCHR-SKCGMCKK) containing 2 histidines and 2 phenylalanines, which can be iodinated,37 and the M21Y-modified human hepcidin. We performed 2 parallel labelings of the same amount of either peptide using equal amounts of \(^{125}\text{I} \). Interestingly, both forms of hepcidin were labeled with similar specific activity (unmodified hepcidin, 1.6 \(\mu Ci/\mu g \); modified hepcidin, 2.1 \(\mu Ci/\mu g \))

To avoid the possible problem that M21Y-modified hepcidin may behave differently from unmodified hepcidin, we used only unmodified (physiologically relevant), \(^{125}\text{I} \)-labeled, HPLC-purified (Figure 1A) human hepcidin in all further experiments described below. Importantly, this peptide was shown to display physiologic activity by significantly (\(P < .01 \)) decreasing the saturation of transferrin with iron after it was injected into mice (Figure 1B), demonstrating its utility for further studies. There was no difference in the ability of labeled or nonlabeled hepcidin to decrease transferrin iron saturation, demonstrating the functional integrity of the peptide.

Identification of 2 hepcidin-binding proteins

After incubation of human plasma or serum with \(^{125}\text{I} \)-hepcidin and subsequent separation using nondenaturing native electrophoresis, 2 major bands (labeled as “?”) were detected corresponding to complexes of \(^{125}\text{I} \)-hepcidin with unknown molecules (Figure 2A). The migration of the 2 bands on Figure 2A are markedly different, at least in part, probably due to their differences in Mr. Free hepcidin is not visible, the 2 bands on Figure 2A are markedly different, at least in part, probably due to their differences in Mr.
proteins. To meet these requirements, we used an established nondenaturing, 2-dimensional separation technique to identify the hepcidin-binding plasma protein(s). This method combines FPLC with native electrophoresis and is compatible with mass spectrometry.

Fractions of plasma from the first dimension of the preparative separation using FPLC (Mono Q column; Figure 2B) were collected, and aliquots from each were trace labeled with 125I-labeled hepcidin with which it was incubated for 1 hour at 37°C. The labeled fractions were then separated by native 3% to 12% gradient polyacrylamide gel electrophoresis (PAGE) as a second dimension of separation (Figure 2C). Fraction 13 contained only the lower, rapidly migrating band in Figure 2A, while fractions 15 to 17 contained both the lower and top bands (Figure 2C). Thus, the latter fractions were pooled and used for further analysis, described in the next section below, to identify the 125I-hepcidin-binding molecules.

Examination of the hepcidin-binding proteins in blood

To identify the uppermost hepcidin-binding protein shown on Figure 2A, fractions 15 through 17 in Figure 2C were concentrated on centrifugal ultrafilters (Millipore Ultrafree NMW 3000) and resolved by native 3% to 12% gradient polyacrylamide gel electrophoresis (PAGE) as a second dimension of separation (Figure 2C). Fraction 13 contained only the lower, rapidly migrating band in Figure 2A, while fractions 15 to 17 contained both the lower and top bands (Figure 2C). Thus, the latter fractions were pooled and used for further analysis, described in the next section below, to identify the 125I-hepcidin-binding molecules. It was of interest to note that the upper band in fraction 15 consisted of a doublet (Figure 2C). This could correspond to the activated and nonactivated forms of α_2-M that are known to migrate slightly differently (see also Figure 7).

Guided by the phosphorimager scan, the top band in Figure 3A (lane 3) was cut from the gel. This band corresponded to a complex of α_2-M with an unknown protein from fractions 15 through 17. This segment of gel was rehydrated, digested with trypsin, and subjected to MS analysis. The unknown protein was unambiguously identified by LC-MS/MS analysis as α_2-M (P01023; Table 2). A SEQUEST search against the human SwissProt database assigned 55 peptides to the protein covering 52% of α_2-M sequence (Figure 3B,C; Table 2). It is notable from Table 2 that other proteins were also identified, although the abundance was far lower (number of peptides: 2-6). These comigrating molecules were also tested for 125I-hepcidin-binding, but no significant affinity was identified (data not shown). Hence, considering the low abundance of these other proteins in comparison to α_2-M and their lack of hepcidin-binding ability, they were considered contaminants.

To further confirm that α_2-M was a specific hepcidin-binding protein, we performed α_2-M immunoprecipitation experiments on human plasma followed by stripping ligands from α_2-M with strongly acidic buffer and ultrafiltration of released peptides on a Millipore Ultrafree filter, Mr cutoff 5 kDa. We proved by mass spectrometry the presence of hepcidin in the ultrafiltrate. Other peptides, known to be bound by α_2-M, were also identified, such as osteoprotegerin. The detectability of hepcidin in MG immunoprecipitates from different individuals varied widely, and this was probably due to the broad intra- and interpersonal levels of hepcidin. Moreover, α_2-M was confirmed as a major hepcidin-binding protein by other approaches described as shown in the next section.

Figure 1. Preparation of bioactive hepcidin. (A) The HPLC profile of purified 125I-hepcidin. Synthetic human hepcidin was renatured, labeled using 125I, as described in Methods, and subjected to HPLC purification (broken line: 125I radioactivity; solid line: 210 nm UV absorbance). More than 98% of the peptide was present in the main 125I peak. (B) Hepcidin significantly (*P < .01) decreases the saturation of transferrin (Tf) with iron when mice were injected with the renatured peptide. Results in panel A are typical of 3 or 4 experiments, while those in panel B are mean ± SD (3-4 experiments).
Super-shift analysis further confirms α₂-M is a hepcidin-binding protein

Additional evidence that α₂-M was the hepcidin-binding protein was obtained by supershift analysis (Figure 4A,B). Human plasma was incubated with ¹²⁵I-human hepcidin (2.8 μM) for 1 hour at 37°C and 2 bands were detected (Fig. 4A) corresponding to a complex of ¹²⁵I-human hepcidin with unknown binding proteins. Native fast-pressure liquid chromatography (FPLC) fractionation of blood plasma followed by (C) separation of fractions using native-gradient PAGE. FPLC fractions were trace labeled with ¹²⁵I-hepcidin and separated by native gradient PAGE. After electrophoresis, the gel was vacuum dried, exposed to a storage phosphorimaging screen, and scanned on a phosphorimager. Results are typical of 3 or 4 experiments.

Size-exclusion chromatography via FPLC demonstrates α₂-M is a hepcidin-binding protein

Binding of hepcidin to α₂-M was further confirmed by size-exclusion chromatography using FPLC. As shown in the inset of Figure 5, a complex of purified α₂-M and ¹²⁵I-hepcidin comigrated with the peak of radioactivity formed in blood plasma after addition of ¹²⁵I-hepcidin. Again, this evidence supports the experiments above, confirming the role of α₂-M as a hepcidin-binding protein.

Serum albumin is the second ¹²⁵I-hepcidin-binding protein, but binds the peptide nonspecifically

As shown in Figure 2A and C, 2 major bands were identified as hepcidin-binding proteins at the top and bottom of the gel. The studies above clearly identified the top band as α₂-M. Identification of the ¹²⁵I-hepcidin-binding protein in the lower band (Figure 2A,C) was performed in an analogous way as described above for the top band.
The fractions 15 through 17 from the FPLC-resolved human plasma were pooled (Figure 2C), trace labeled with 125I-hepcidin (20 nM), and resolved by native gradient PAGE. After this band was cut from the gel and analyzed by mass spectrometry for its protein components, albumin was found to be the hepcidin-binding protein in the lower band (Table 2 band 2). Moreover, a Coomassie blue stained band of albumin (Sigma-Aldrich) shown in Figure 6A (second lane) corresponded to the most abundant protein in plasma, namely albumin (Figure 6A first lane). The lower-migrating 125I-hepcidin-binding protein in human plasma (Figure 6B first lane) comigrated with purified albumin.

Table 2. Identification of the hepcidin-binding protein in plasma as α_2-macroglobulin

<table>
<thead>
<tr>
<th>Band no.</th>
<th>Protein name</th>
<th>DTB no.</th>
<th>MW, kDa</th>
<th>No. of peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α_2-macroglobulin precursor*</td>
<td>P01023</td>
<td>163</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>Ig kappa chain C region</td>
<td>P01834</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Ig lambda chain C regions</td>
<td>P01842</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Ig gamma-1 chain C region</td>
<td>P01857</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>Ig gamma-2 chain C region</td>
<td>P01859</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>Ig gamma-4 chain C region</td>
<td>P01861</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Ig alpha-1 chain C region</td>
<td>P01876</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Serum albumin precursor</td>
<td>P02768</td>
<td>69</td>
<td>40</td>
</tr>
</tbody>
</table>

DTB indicates Swiss-Prot number; and MW, molecular weight.

α_2-M: P01023: Pooled fractions 15 through 17 (see Figure 3A lane 3) were cut from the gel, rehydrated, digested with trypsin, and subjected to MS analysis. The unknown protein was identified by LC-MS/MS analysis as α_2-M. The results are typical from 3 experiments.
labeled with 125I-hepcidin and detected by phosphorimaging (Figure 6B second lane). These experiments confirmed that albumin was the lower rapidly migrating 125I-hepcidin–binding protein in Figure 2A and C. Hepcidin-binding to albumin was found to be nonspecific, displaying nonsaturable kinetics in the range of up to a 1000-fold molar excess of hepcidin over albumin (Figure 6C). By quantitating radioactivity in the 2 hepcidin-containing bands (Figure 6B first lane), we found that 30% of plasma 125I-hepcidin was bound to α_2-M, and the rest was associated with albumin. Considering this observation in relation to the fact that in humans the concentration of α_2-M ($\leq 2.8-5.5 \text{ M}$) is 180 to 360 times less than albumin ($\geq 1 \text{ mM}$), it was clear α_2-M is the major and specific hepcidin transport molecule. Because the concentration of human hepcidin in plasma varies from 0 to 1.5 M, it is apparent there is an excess of α_2-M. Thus, it was important to determine the affinity of α_2-M for hepcidin to assess the specificity of the interaction that is crucial for understanding its activity.

Identification of a cooperative mechanism of hepcidin binding to activated α_2-M

To determine the α_2-M-hepcidin affinity constant and stoichiometry, we examined 125I-hepcidin binding to α_2-M to assess the hepcidin concentration required to saturate a constant amount of α_2-M. We could not use the measurement of free and bound 125I-hepcidin because, in contrast to the 125I-hepcidin–α_2-M complex, the free unbound hepcidin is a cationic peptide that does not migrate into gels. To separate the α_2-M-125I-hepcidin complex, we performed native electrophoresis at 37°C to provide physiologically relevant temperature, ionic strength, and pH for the determination of the hepcidin-binding constant with both α_2-M and α_2-M-MA. This is an established technique used to examine interactions of physiologic ligands with α_2-M.

Under physiologic conditions, α_2-M is activated to bind ligands by a range of proteases. This can be closely mimicked by...

Figure 4. Hepcidin-binding protein in plasma is supershifted with an anti–α_2-M antibody. (A) Human plasma was incubated with 125I-human hepcidin (2.8 μM) for 1 hour at 37°C. This sample was then divided into portions to which increasing amounts of anti–α_2-M antibody (5-20 μL; concentration 200 $\mu\text{g/mL}$) or anti–cyclin D1 antibody (20 μL; concentration 200 $\mu\text{g/mL}$) were added. The samples were separated using native-gradient PAGE. After electrophoresis, the gel was vacuum dried, scanned, and analyzed using a phosphorimager. Results are typical from 3 separate experiments. (B) The radioactivity in the 125I-hepcidin–α_2-M protein band (A) and the sample wells (B) were plotted to show that the addition of anti–α_2-M antibody progressively decreases the radioactivity in the 125I-hepcidin–binding protein band and increases the activity in the sample wells. The activity in the wells is because the high molecular weight antibody–α_2-M complex cannot penetrate into the gel. The radioactivity in the sample well with no antibody is caused by the presence of cationic free hepcidin, which does not migrate into the gel. Results are typical of 3 separate experiments.

Figure 5. Analysis of the hepcidin-α_2-M interaction using native FPLC. The main graph shows the UV absorbance of fractions of human plasma (broken line) and purified α_2-M (broken line) separated by gel-size chromatography using FPLC (“Methods”). The inset shows that the complex of purified α_2-M and 127I-hepcidin comigrates with the peak of radioactivity formed in blood plasma after addition of 125I-hepcidin. Free 127I-hepcidin (●); 125I-hepcidin incubated for 1 hour at 37°C with either plasma (●; concentration 2.8 μM) or purified α_2-M (●; 1.4 μM). Results are typical of 3 experiments.
treatment with methyamine (see “Materials”), and this method is preferred to protease activation that nonspecifically damages α2-M, perturbing the results. In fact, activation by MA is the established method of choice for examining binding of ligands to activated α2-M. Hence, in this investigation, we assessed the binding of hepcidin to α2-M and its MA-activated form (α2-M-MA; Figure 7A-C). Binding of 125I-hepcidin to nonactivated α2-M resulted in a curve indicating a single saturable class of noninteracting 125I-hepcidin-binding sites (Figure 7A). Fitting of these data and Scatchard analysis led to an estimate of 2 hepcidin-binding sites per α2-M molecule, with a \(K_d \) of 177 (±27) nM (equation 3). Using 125I-hepcidin, we were able to demonstrate that increasing concentrations of unlabeled hepcidin compete with 125I-hepcidin, preventing binding of the label to α2-M (Figure 7B). These data demonstrate that the labeled peptide was both functional and competitive at concentrations approximated by the previously measured \(K_d \) in binding with the unlabeled peptide.

In accordance with previous studies, MA-activation caused a mobility shift in α2-M migration on native electrophoresis, suggesting a conformational change (Figure 7C). In contrast to nonactivated α2-M (Figure 7A), activated α2-M-MA bound hepcidin and resulted in a sigmoidal saturation curve as a function of increasing 125I-hepcidin concentration (Figure 7D). The shape of this curve was typical of cooperative allosteric binding and its analysis using a modified Hill equation showed that activation of α2-M led to the appearance of additional binding sites. Fitting to the data gave the number of binding sites as \(n \sim 3 \) with a \(K_d \) for each site being approximately 0.3 μM. The estimate of \(n \sim 3 \) represents the lowest number of hepcidin molecules bound to the α2-M oligomer, as the Hill equation does not account for subtle variations between affinities of the sites, thus limiting precision in this calculation.

To definitively define the stoichiometry of hepcidin-binding to α2-M-MA, ultracentrifugation was used (see “Methods”). This method enabled separation of bound hepcidin (pelleted) and unbound hepcidin (not pelleted) and demonstrated that each molecule of α2-M or α2-M-MA bound 1.98 ± 0.11 and 4.1 ± 0.19 (3 experiments) molecules of hepcidin, respectively. This value was further substantiated by the data in Figure 7D, showing that the binding curve plateaud as the hepcidin to α2-M molar ratio was increased to 4. Collectively, our data indicate the presence of 4 hepcidin-binding sites per α2-M-MA molecule.

The α2-M-hepcidin complex decreases ferroportin expression in J774 cells

To assess the functional effect of the α2-M-hepcidin complex, studies were initiated using commercial α2-M (Sigma-Aldrich) and J774 cells that express ferroportin and respond to hepcidin by reducing ferroportin expression. Cells were incubated for 6 hours at 37°C in media without FCS containing: hepcidin (0.7 μM), α2-M (2.8 μM), hepcidin (0.7 μM) plus α2-M (2.8 μM), albumin (2.8 μM), or hepcidin (0.7 μM) plus albumin (2.8 μM; Figure 7E). Before the addition to cells, all solutions were incubated for 1 hour at 37°C to ensure complex formation. Hepcidin only slightly (\(P > .05 \)) reduced ferroportin, while α2-M alone or α2-M plus hepcidin significantly (\(P < .05 \) and \(P < .01 \), respectively) decreased its expression (Figure 7E). A potential reason for α2-M alone reducing ferroportin expression may be contamination with hepcidin present in the purified α2-M, as found in studies examining other α2-M ligands. This effect of α2-M...
alone was observed in different lots of the protein from Sigma-Aldrich and also when it was purchased from a different source (Sapphire Bioscience, Sydney, Australia). In contrast to the \(\alpha_2\)-M alone, hepcidin treatment, albumin plus hepcidin did not lead to any significant decrease in ferroportin (Figure 7E). These experiments demonstrate that the \(\alpha_2\)-M-hepcidin complex is functionally active and more effective than hepcidin alone at reducing ferroportin expression. Furthermore, it should be noted that this is not a nonspecific effect, as hepcidin added to the protein control (albumin) at the same concentration as \(\alpha_2\)-M had no significant effect on ferroportin expression. Previous studies by Kaplan and colleagues\(^1\) have shown that the effect of hepcidin on down-regulating ferroportin is far more complete than that demonstrated in Figure 7E. However, it is notable that Kaplan et al used HEK293 cells transfected with ferroportin, which hyperexpress this protein.\(^1\) Hence, the comparison to J744 cells cannot be readily made as the latter express ferroportin under a physiologic control mechanism. Furthermore, the study of Kaplan et al assessed membrane ferroportin expression, while we examined total cellular ferroportin, which is less likely to demonstrate ablation after only 6 hours of incubation with \(\alpha_2\)-M-hepcidin. Other authors using western blots have also shown, in J774 cells, that the response of ferroportin to hepcidin is less than complete.\(^50\)

Discussion

We hypothesized that in analogy to other hormones,\(^52\)-\(^54\) hepcidin would circulate bound to specific binding proteins. We used \(^{125}\)I-hepcidin to demonstrate the presence of hepcidin-binding proteins in human blood. To identify these proteins by mass spectrometry, we purified \(^{125}\)I-labeled hepcidin-binding protein complexes using a native 2-dimensional technique consisting of FPLC and nondenaturing PAGE.\(^17\) The hepcidin-binding proteins were identified as \(\alpha_2\)-M and albumin (Figures 3-6).

The identity of \(\alpha_2\)-M as a specific, high-affinity, hepcidin-binding protein was confirmed by the following evidence: (1) purified \(\alpha_2\)-M binds \(^{125}\)I-hepcidin and this complex comigrates with the band obtained by adding \(^{125}\)I-hepcidin to fractionated or whole plasma as shown in Figure 3A; (2) the hepcidin-binding protein complex in plasma was recognized and super-shifted with an anti-\(\alpha_2\)-M antibody (Figure 4), but not by a nonspecific control antibody; (3) native size-exclusion chromatography demonstrated the \(^{125}\)I-hepcidin-carrier protein complex in plasma was coeluting with \(^{125}\)I-hepcidin added to purified \(\alpha_2\)-M (Figure 5); and (4) \(K_d \) measurements demonstrated specific \(^{125}\)I-hepcidin-binding to 2 \((\alpha_2\)-M)
and 4 (α2-M-MA) high-affinity sites on the protein, with evidence of allosteric cooperativity in α2-M-MA (Figure 7). These studies were confirmed by ultra-centrifugation, where α2-M or α2-M-MA bound 2 or 4 hepcidin ligands per molecule, respectively.

The current results are significant, as it has been previously thought that due to the low Mᵣ of hepcidin (≈ 2800 Da),35 it would be rapidly cleared by the kidney, reducing its half-life. The specific binding of α2-M prevents this clearance, and, hence, markedly modulates the activity of the peptide. If we consider a theoretical calculation where all α2-M is activated (Kᵰ 0.3 μM) and the affinity of albumin for hepcidin is weak (assumed/approximated Kᵰ 1 mM), then approximately 11% of hepcidin would be free. This may explain the presence of some hepcidin in urine.13

This is the first demonstration that α2-M is a high-affinity hepcidin-binding molecule. Moreover, upon activation, there is evidence of multiple allosteric binding sites on α2-M-MA, and this has not been described for its other ligands. Further, these observations suggest a regulatory role for α2-M on hepcidin function. It is known that α2-M is a multifunctional plasma protein.24 The first described function of α2-M was its “trapping” and inhibition of proteases.68 This inhibition process triggers a conformational change in α2-M-MA, converting it to the activated form, which binds hormones, signaling molecules, etc.24 In fact, numerous molecules bind to α2-M and α2-M-MA, such as transforming growth factor-β type 1 and 2,5,7 platelet-derived growth factor,9 nerve growth factor,60 tumor necrosis factor-α,5 basic fibroblast growth factor,62 interleukins-1, -6, and -8,62-64 vascular endothelial growth factor,65 growth hormone,66 osteoprotegerin,14 leptin,52 activin, and inhibin.67 The binding affinities (Kᵰ) of α2-M and α2-M-MA for their ligands are rarely described, but for some 24,68,69 it was reported to lie within 10⁻¹⁰⁻¹⁰⁻⁹ M, which corresponds to the affinity of α2-M for hepcidin (ie, α2-M, Kᵰ = 177 nM; α2-M-MA, Kᵰ = 0.3 μM) observed herein.

Panutich and Ganz36 demonstrated that α2-M-MA binds antimicrobial peptides known as defensins, which have some homology to hepcidin. However, these authors did not demonstrate cooperative allosteric binding. Considering the cooperativity found upon hepcidin-binding to α2-M-MA (Figure 7D), it is relevant to discuss that a sigmoidal binding curve is also observed when O₂ binds with the 4 heme centers of hemoglobin, leading to efficient uptake and release.47 Analogously, the efficient binding and release of 4 hepcidin molecules to α2-M mediated via allosteric activation may be crucial for its function. It is notable that again, like hemoglobin, α2-M is composed of 4 subunits,24 thus alterations in interactions between subunits may lead to cooperative binding.

The functionality of the α2-M–hepcidin complex was shown in our studies where it was more effective than hepcidin alone at reducing ferroportin-1 expression (Figure 7E). The precise mechanism inducing this effect is unknown. However, ligands bound to α2-M undergo endocytosis by binding to the α2-M receptor.24,70,71 This receptor is found in many cell types,24,72 and mediates ligand uptake and delivery to endosomes and lysosomes,24,73,74 Therefore, considering the ability of α2-M to target its ligands to cells,24 it is conceivable that hepcidin-binding to α2-M could influence hepcidin activity. Such alterations may include the half-life of hepcidin, its tissue transfer, and the binding of hepcidin to ferroportin. It is also possible that the α2-M–hepcidin complex binds to other receptors. Finally, the hepcidin-MG complex could play some signaling role once it is processed by the lysosome.

In conclusion, identification of α2-M as the hepcidin carrier will lead to deeper understanding of its role in iron metabolism. Because hepcidin has diagnostic potential, any method for determination of its blood concentration must take into account hepcidin-binding proteins. This investigation is important for understanding hepcidin function and its use in diagnostic tests.

Acknowledgments

The authors thank Mrtvá Ryba and old Sumava. We also appreciate assistance from Miroslav Kušiák and Vojtěch Drbohlav from Immunotech-Beckmann Coulter, Prague, Czech Republic. We also kindly acknowledge the assistance of the following people for their careful examination and comments on the manuscript: Dr Katie Dixon, Dr Danuta Kalinowski, Ms Zákána Kovacevic, Dr David Lovejoy, and Dr Helena Mangs.

This research was supported by grants to D.V. and J.P. from the Czech Science Foundation (GACR) No. 204/07/0830, No.204/03/H066, No. 305/09/1390, Ministry of Health (MZCR) grants MZCR/UHKT No. 023736, IGA MZCR No. NR8930-4, IGA MZCR NR8317-4, IGA No. NS 10300-3, and the Ministry of Education, Youth, and Sports of the Czech Republic (MSM) projects No. LC06044, No. LC07017, No. MSM 0021620858, No. 0021620806, and Institutional Research Concept AV0Z50205010 (IMIC). This project was also supported by a fellowship and grants from the NHMRC of Australia to D.R.R., a University of Sydney Short-Term Visiting Fellowship to D.V and D.R.R. and a University of Sydney Post-doctoral Fellowship to R.S.

Authorship

Contribution: G.P., J.P., K.K., I.H., P.H., P.W.K., S.S.-L., P.P., R.S., E.B., M.L.-H., and Y.S.R. designed and performed experiments and wrote sections of the manuscript; and D.V. and D.R.R. designed the study, obtained grant funding, and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Des R. Richardson, Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, Blackburn Bldg D06, University of Sydney, Sydney, New South Wales, 2006 Australia or Daniel Vyoral, Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague 2, 128 20, Czech Republic; e-mail: d.richardson@med.usyd.edu.au or Daniel.Vyoral@uhkt.cz.

References

74. Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem. 1990;265:17401-17404.